Что такое относительная масса элемента. Основные понятия и законы химии

Атом — это материальная частица, поэтому она имеет массу.
А что же такое относительная атомная масса?

Больше уроков на сайте

— Состав простых и сложных веществ можно выразить химической формулой.

Химическая формула простого вещества записывается в виде знака — символа элемента. Например, медь — простое вещество — обозначается Сu; сера — S и т.д. У некоторых простых веществ молекула состоит из двух атомов. Например, из двухатомных молекул состоят некоторые неметаллы в газообразном состоянии: водород Н2 (читается «аш-два»), кислород О2 («о-два»), хлор Сl2 («хлор-два»). Из этих формул видно, что число, записанное справа внизу у символа элемента, означает число атомов в молекуле. Его называют индексом .

Сложные вещества состоят из атомов разных элементов. Например, вода Н2О («аш-два-о»), углекислый газ СО2 («це-о-два»), поваренная соль NaCl («натрий-хлор»)

Относительная атомная масса (Аr) элемента есть отношение массы атома данного элемента к 1/12 массы атома углерода; это безразмерная величина.

Например: Аr(Н2) = 1 · 2 = 2

Аr(Сl2) = 35,5 · 2 = 71

Относительная молекулярная масса (Мr) вещества представляет собой сумму относительных атомных масс элементов, образующих данное вещество.

Каждый атом любого химического элемента имеет свою массу, также как и любое физическое тело, окружающее нас, в том числе и мы с Вами. Но в отличии от нас, масса атомов очень мала. Поэтому учеными была принята за эталон масса 1/12 массы атома углерода 6 12 С (как самая легкая) и масса остальных атомов сравнивалась с массой этого эталона, отсюда и название «Относительная атомная масса» от англ. « relative » относителен. Данная величина не имеет единиц измерения и обозначается Ar . Численное значение относительной атомной массы любого элемента прописано в периодической таблице Д.И. Менделеева.

Если вещество образовано несколькими элементами (одинаковыми или разными), то речь уже идет о молекулах и «Молекулярной относительной массе». Она складывается из атомных масс всех химических элементов образующих молекулу, умноженные на количество этих атомов. Так же не имеет единиц измерения и обозначается Mr . Например:

Mr (O 2) =Ar (O) ·2 = 16 · 2 = 32;

Mr (H 2 O) = Ar (H) · 2 + Ar (O) = 1· 2 +16 = 18;

Mr (H 2 SO 4) = Ar (H) · 2 + Ar (S) + Ar (O) · 4 = 1· 2 + 32 + 16 · 4 = 98;

Учитель неоднократно напоминает ученикам, что значение Ar находим в периодической системе Д.И. Менделеева под знаком химического элемента. Значение атомных масс разных химических элементов складываются между собой. Если одинаковых атомов в молекуле несколько, от их численное значение атомных масс умножается на количество этих атомов. (закрепление новой темы будет происходить при выполнении самостоятельной работы в исследовательской части урока)

2. Исследовательская часть (самостоятельная работа учеников под руководством учителя), при возникновении затруднений у учеников учитель должен быть очень осторожен и не в коем случае, не давать ученикам прямой правильный ответ, то есть «готовые см » они должны добыть их сами. Лучше «подталкивать» ученика к правильному решению наводящими вопросами, стимулирующими мыслительную деятельность, необходимость связывать уже имеющиеся знание из других областей с новым материалом. Это необходимо для того, чтобы не нарушить процесс исследования учеников и добиться наилучшего результата при изучении нового материала, поскольку знания, добытые самостоятельно удерживаются в долговременной памяти, нежели готовая информация.

Каждый атом обладает определенной массой, значение которой чрезвычайно мало (от 1·10 -24 до 1·10 -22 г.). Пользоваться такими значениями в химических расчетах очень неудобно, поэтому на практике вместо абсолютных масс атомов используются относительные атомные массы (называть эту величину просто, атомная масса — не верно) и обозначаются символом Ar. Относительные атомные массы являются некоторым соотношением между абсолютными массами различных атомов.

Относительная атомная масса элемента — это число, показывающее, во сколько раз масса одного атома данного элемента больше 1/12 части массы атома изотопа углерода-12 (12 С).

Например, округленные значения относительной атомной массы кислорода и фтора составляют 16,00 и 19,00. Отсюда следует, что значения абсолютной атомной массы для одного атома кислорода больше в 16 раз, а значение той же величины для одного атома фтора больше в 19 раз, чем значение 1/12 части абсолютной атомной массы атома 12 С, а массы атомов O и F относятся между собой как 16: 19.

Относительные атомные массы элементов указаны в Периодической системе элементов Д.И. Менделеева. В электронной таблице представленной ниже, вы можете получить данные об относительной атомной массе всех элементов Периодической системы.

Для большинства элементов в Периодической системе указаны среднеарифметические значения относительных атомных масс для природной смеси изотопов этих элементов (изотопно-смешанные элементы). Углерод также встречается в природе в виде двух изотопов 12 С (98,90%) и 13 С (1,10%); этой природной смеси отвечает значение относительной атомной массы 12,0000·0,9890 + 13,0034·0,0110 = 12,011 а.е.м. Природный фтор состоит только из одного изотопа — изотопно чистый элемент, его относительная атомная масса определена достаточно точно 18.9984032 а.е.м.

Ранее за точку отсчета относительных атомных масс принимался кислород (масса 1/16 части атома кислорода называлась кислородной единицей), причем в физике использовался чистый изотоп 16 O (относительная атомная масса 16,0000 а.е.м.), а в химии — природная смесь изотопов с тем же значением относительной атомной массы. Таким образом, в старой физической литературе относительные массы элементов соответствовали физической шкале с кислородной единицей, масса которой равна 1,65976·10 -24 г, а в старой химической литературе — химической шкале с кислородной единицей, масса которой 1,66022·10 -24 г. С целью унификации в 1959-1961 г. Международные союзы теоретической и прикладной физики и теориетической и прикладной химии утвердили новую шкалу, основанную на относительной атомной массе 12С для которого значение относительной атомной массы установлено равным 12,0000 (точно). По современной шкале атомной единицей массы (а.е.м.) является унифицированная углеродная единица, равная 1,660538782(83)·10 -27 кг (по данным 2006 г). Значения относительных атомных масс элементов определяют как частное от деления значения абсолютной атомной массы атома данного элемента к 1/12 части абсолютной массы атома изотопа 12 С.

Пример. Масса атома фтора 3,15481·10 -23 г, следовательно, относительная атомная масса фтора Ar(F) = 3,15481·10 -23 г / 1,660538782(83)·10 -24 г = 18,9984 а.е.м.

Атомная единица массы — фундаментальная физико-химическая постоянная, значение которой будет уточняться по мере развития техники измерения. Официально рекомендованными являются англоязычные термины atomic mass unit (a.m.u.) или unified atomic mass unit (u.a.m.u.).

Международный союз теоретической и прикладной химии — ИЮПАК (International Union of Pure and Applied Chemistry) — IUPAC, каждые два года публикует сводку уточненных значений Ar для всех химических элементов. В последние десятиления появились две тенденции: для изотопно-чистых элементов значения Ar определяются все более точно за счет повышения чувствительности измерительных приборов, а для изотопно-смешанных элементов точность определения Ar снижается из-за различия изотопного состава в пробах разного происхождения. Комиссия ИЮПАК по химическому образованию рекомендует использовать для учебных целей значения Ar, содержащие не менее четырех значащих цифр.

Значения относительной атомной массы известны и для каждого изотопа любого элемента (т.е. для каждого нуклида). Значения Ar для изотопа водорода 1 H (протий) и 2 H (дейтерий) равны 1,0078 и 2,0141, для изотопов 16 O, 17 O и 18 O — соответственно 15,9949; 16,9991 и 17,9992; для изотопа 27 Al = 26,9815. Целое число, которое указано в левом верхнем индексе у символа элемента (12 С), есть фактически округленное значение его относительной атомной массы. Оно называется массовым числом изотопа и равно сумме нуклонов (протонов и нейтронов) в ядре атома этого изотопа.

Из вышесказанного следует, что масса (точнее масса покоя) одного нуклона в атомных единицах массы равна примерно единице; точные значения: mp = 1.007276 а.е.м. для протона, и mn = 1.008665 а.е.м. для нейтрона. Отсюда ясен выбор шкалы для относительных масс элементов; простейший атом водорода (один протон в ядре) должен иметь единичное значение Ar, приблизительно равное массе протона (точное значение 1,00794 а.е.м.).
Коэффициентом пропорциональности между единицей массы — граммом и единицей относительной атомной массы является число Авогадро равно N A = 6.02214082(11)·10 23 моль -1 .

Общие сведения [ | ]

Одним из фундаментальных свойств атома является его масса . Абсолютная масса атома - величина, чрезвычайно малая. Так, атом водорода имеет массу около 1,67⋅10 −24 г . Поэтому в химии (для практических целей) преимущественно и значительно удобнее пользоваться относительной [условной] величиной, которую называют относительной атомной массой или просто атомной массой и которая показывает, во сколько раз масса атома данного элемента больше массы атома другого элемента, принятой за единицу измерения массы.

В качестве единицы измерения атомных и молекулярных масс принята 1 ⁄ 12 часть массы нейтрального атома наиболее распространённого изотопа углерода 12 C . Эта внесистемная единица измерения массы получила название атомная единица массы (а. е. м. ) или дальтон (Да).

Разность между атомной массой изотопа и его массовым числом называется избытком массы (обычно его выражают в МэВ). Он может быть как положительным, так и отрицательным; причина его возникновения - нелинейная зависимость энергии связи ядер от числа протонов и нейтронов, а также различие в массах протона и нейтрона.

Зависимость атомной массы изотопа от массового числа такова: избыток массы положителен у водорода-1 , с ростом массового числа он уменьшается и становится отрицательным, пока не достигается минимум у, потом начинает расти и возрастает до положительных значений у тяжёлых нуклидов . Это соответствует тому, что деление ядер, более тяжёлых, чем железо, высвобождает энергию, тогда как деление лёгких ядер требует энергии. Напротив, слияние ядер легче железа высвобождает энергию, слияние же элементов тяжелее железа требует дополнительной энергии.

Молекулярная (молярная) масса [ | ]

История [ | ]

При вычислениях атомных масс изначально (с начала XIX века, по предложению Дж. Дальтона ; см. Атомистическая теория Дальтона) за единицу массы [относительную] принимали массу атома водорода как самого лёгкого элемента и по отношению к нему вычисляли массы атомов др. элементов. Но так как атомные массы большинства элементов определяются, исходя из состава их кислородных соединений , то фактически (де-факто) вычисления производились по отношению к атомной массе кислорода, которая принималась равной 16; отношение между атомными массами кислорода и водорода считали равным 16: 1. Впоследствии более точные измерения показали, что это отношение равно 15,874: 1 или, что то же самое, 16: 1,0079 , - в зависимости от того, к какому атому - кислорода или водорода - относить целочисленное значение. Изменение атомной массы кислорода повлекло бы за собой изменение атомных масс большинства элементов. Поэтому было решено оставить для кислорода атомную массу 16, приняв атомную массу водорода равной 1,0079.

Таким образом, за единицу атомной массы принималась 1 ⁄ 16 часть массы атома кислорода, получившая название кислородной единицы . В дальнейшем было установлено, что природный кислород представляет собой смесь изотопов , так что кислородная единица массы характеризует среднее значение массы атомов природных изотопов кислорода (кислорода-16, и кислорода-18), которое оказалось непостоянным из-за природных вариаций изотопного состава кислорода. Для атомной физики такая единица оказалась неприемлемой, и в этой отрасли науки за единицу атомной массы была принята 1 ⁄ 16 часть массы атома кислорода 16 O. В результате оформились две шкалы атомных масс - химическая и физическая. Наличие двух шкал атомных масс создавало большие неудобства. Величины многих констант, рассчитанных по физической и химической шкалам, оказывались различными . Это неприемлемое положение привело к введению углеродной шкалы атомных масс вместо кислородной.

Единая шкала относительных атомных масс и новая единица атомной массы принята Международным съездом физиков (1960) и унифицирована Международным съездом химиков (1961; спустя 100 лет после 1-го Международного съезда химиков), вместо предыдущих двух кислородных единиц атомной массы - физической и химической. Кислородная химическая единица равна 0,999957 новой углеродной единицы атомной массы. В современной шкале относительные атомные массы кислорода и водорода равны соответственно 15,9994: 1,0079… Поскольку новая единица атомной массы привязана к конкретному изотопу, а не к среднему значению атомной массы химического элемента, природные изотопные вариации не сказываются на воспроизводимости этой единицы.

Примечания [ | ]

Литература [ | ]

Ссылки [ | ]

Каждое вещество не является чем-то сплошным, оно состоит из маленьких частиц, представляющих собой молекулы. Молекулы из атомов. Отсюда можно сделать выводы, что определяемая масса вещества может охарактеризовать молекулы и атомы входящих элементов. В свое время Ломоносов большую часть работ посветил данной теме. Однако, многих любопытных естественников всегда интересовал вопрос: «В каких единицах выражается масса молекулы, масса атома?»

Но, для начала, окунемся немного в историю

В прошлом в расчетах за единицу массы атома всегда брали массу водорода (Н). И, исходя из этого, производили все необходимые расчеты. Однако, большинство соединений присутствуют в природе в виде кислородных соединений, поэтому массу атома элемента рассчитывали по отношению к кислороду (О). Что довольно неудобно, так как приходилось в расчётах постоянно учитывать соотношение О:Н, равное 16:1. К тому же, исследования показали неточность в соотношении, оно на самом деле было равно 15,88:1 или 16:1,008. Такие изменения послужили причиной для пересчета массы атомов для многих элементов. Было принято решение оставить для О значение массы 16, а для Н - 1,008. Дальнейшее развитие науки привело к раскрытию природы самого кислорода. Выяснилось, что молекула кислорода имеет несколько изотопов с массами 18, 16, 17. Для физики не приемлемо использование единицы, имеющей Таким образом, были сформированы две шкалы атомных весов: в химии и физике. Только в 1961 году ученые пришли к выводу, что необходимо создать единую шкалу, которая используется и в наши дни под названием "углеродная единица". В результате, относительная элемента представляет собой массу атома в углеродных единицах.

Способы расчета

Любого вещества состоит из масс атомов, которые образуют данную молекулу. Отсюда следует вывод, что масса молекулы должна выражаться в углеродных единицах, так же, как и масса атома, т.е. относительная атомная масса определяется с учетом относительной Как известно, с помощью можно определить число атомов в молекуле. Зная число атомов и массу молекулы, можно рассчитать атомную массу. Существует еще несколько способов ее определения. В 1858 году Канниццаро предложил метод, по которому относительная атомная масса определяется у тех элементов, которые способны образовывать газообразные соединения. Однако такой способностью не обладают металлы. Поэтому для определения их атомной массы был выбран метод, использующий зависимость атомной массы и теплоемкости соответствующего вещества. Но все рассмотренные способы дают только приближенные значения атомных масс.

Как была рассчитана точная масса атомов элемента?

Как показали научные исследования, из этих приближенных значений можно определить точное. Для этого только требуется сравнить данное значение с эквивалентом. Эквивалент элемента равен отношению относительной атомной массы элемента к его валентности в соединении. Из этого соотношения была определена верная относительная атомная масса каждого элемента.

Из материалов урока вы узнаете, что атомы одних химических элементов отличаются от атомов других химических элементов массой. Учитель расскажет, как химики измеряли массу атомов, которые настолько мало, что их не увидишь даже с помощью электронного микроскопа.

Тема: Первоначальные химические представления

Урок: Относительная атомная масса химических элементов

В начале 19 в. (спустя 150 лет после работ Роберта Бойля) английский ученый Джон Дальтон предложил способ определения массы атомов химических элементов. Рассмотрим суть этого метода.

Дальтон предложил модель, в соответствии с которой в молекулу сложного вещества входит только по одному атому различных химических элементов. Например, он считал, что молекула воды состоит из 1 атома водорода и 1 атома кислорода. В состав простых веществ по Дальтону тоже входит только один атом химического элемента. Т.е. молекула кислорода должна состоять из одного атома кислорода.

И тогда, зная массовые доли элементов в веществе, легко определить во сколько раз масса атома одного элемента отличается от массы атома другого элемента. Таким образом, Дальтон считал, что массовая доля элемента в веществе определяется массой его атома.

Известно, что массовая доля магния в оксиде магния равна 60%, а массовая доля кислорода – 40%. Идя по пути рассуждений Дальтона, можно сказать, что масса атома магния больше массы атома кислорода в 1,5 раза (60/40=1,5):

Ученый заметил, что масса атома водорода самая маленькая, т.к. нет сложного вещества, в котором бы массовая доля водорода была бы больше массовой доли другого элемента. Поэтому он предложил массы атомов элементов сравнивать с массой атома водорода. И таким путем вычислил первые значения относительных (относительно атома водорода) атомных масс химических элементов.

Атомная масса водорода была принята за единицу. А значение относительной массы серы получилось равным 17. Но все полученные значения были либо приблизительными, либо неверными, т.к. техника эксперимента того времени была далека от совершенства и установка Дальтона о составе вещества была неверной.

В 1807 – 1817 гг. шведский химик Йёнс Якоб Берцелиус провел огромное исследование по уточнению относительных атомных масс элементов. Ему удалось получить результаты, близкие к современным.

Значительно позже работ Берцелиуса массы атомов химических элементов стали сравнивать с 1/12 массы атома углерода (Рис. 2).

Рис. 1. Модель расчета относительной атомной массы химического элемента

Относительная атомная масса химического элемента показывает, во сколько раз масса атома химического элемента больше 1/12 массы атома углерода.

Относительная атомная масс обозначается А r , она не имеет единиц измерения, так как показывает отношение масс атомов.

Например: А r (S) = 32, т.е. атом серы в 32 раза тяжелее 1/12 массы атома углерода.

Абсолютная масса 1/12 атома углерода является эталонной единицей, значение которой вычислено с высокой точностью и составляет 1,66 *10 -24 г или 1,66 *10 -27 кг. Эта эталонная масса называется атомной единицей массы (а.е.м.).

Значения относительных атомных масс химических элементов запоминать не надо, они приведены в любом учебнике или справочнике по химии, а также в периодической таблице Д.И. Менделеева.

При расчетах значения относительных атомных масс принято округлять до целых.

Исключение составляет относительная атомная масса хлора – для хлора используют значение 35,5.

1. Сборник задач и упражнений по химии: 8-й класс: к учебнику П.А. Оржековского и др. «Химия, 8 класс» / П.А. Оржековский, Н.А. Титов, Ф.Ф. Гегеле. – М.: АСТ: Астрель, 2006.

2. Ушакова О.В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с.24-25)

3. Химия: 8-й класс: учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005.(§10)

4. Химия: неорг. химия: учеб. для 8 кл. общеобр. учреждений / Г.Е. Рудзитис, ФюГю Фельдман. – М.: Просвещение, ОАО «Московские учебники», 2009. (§§8,9)

5. Энциклопедия для детей. Том 17. Химия / Глав. ред.В.А. Володин, вед. науч. ред. И. Леенсон. – М.: Аванта+, 2003.

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов ().

2. Электронная версия журнала «Химия и жизнь» ().

Домашнее задание

с.24-25 №№ 1-7 из Рабочей тетради по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006.