Химические свойства алкинов подробно. Химические и физические свойства алкинов

Алкины - это ненасыщенные алифатические углеводороды, имеющие одну или несколько тройных углерод-углеродных связей. Тройные связи имеют линейную структуру (см. разд. 2.1). Алкины с одной тройной связью образуют гомологический ряд, имеющий общую формулу Простейшим членом этого ряда является этин (ацетилен). Он имеет формулу

Систематические названия алкинов образуются подобно названиям соответствующих алканов, с той разницей, что суффикс заменяется на суффикс Например

Температуры плавления и кипения алкинов приблизительно такие же, как и у соответствующих алканов и алкенов. Они увеличиваются при возрастании числа атомов углерода в углеродной цепи алкина. При комнатной температуре и нормальном давлении этин (ацетилен), пропин и бут-1-ин находятся в газообразном состоянии. Бут-2-ин имеет температуру кипения 27 °С. Высшие алкины в нормальных условиях представляют собой жидкости. Подобно алкенам и алканам, алкины нерастворимы в воде, но растворимы в неполярных органических растворителях.

Лабораторные методы получения

Ацетилен получают, гидролизуя дикарбид (ацетилид) кальция холодной водой:

Высшие алкины получают дегидрогалогенированием дигалогеноалканов. Эта реакция протекает с отщеплением двух молекул соответствующих галогеноводородов. Для ее проведения дигалогеноалканы подвергают кипячению с обратным холодильником в этанольном растворе гидроксида калия. Например

Высшие алкины можно также получать по реакции дикарбида (ацетилида) натрия с первичными алкилгалогенидами. Например

Эта реакция представляет собой пример нуклеофильного замещения, а нуклеофилом в ней является ацетилидный карбанион (дикарбид-ион):

Реакции алкинов

Во многих реакциях алкины обладают намного большей реакционной способностью, чем соответствующие алкены. Благодаря наличию -электронов в тройных связях алкины могут вступать в реакции электрофильного присоединения. В реакциях с участием несимметричных алкинов и несимметричных реагентов выполняется правило Марковникова. Однако в реакциях присоединения, катализируемых пероксидами, происходит образование антимарковниковского продукта, так как они протекают по радикальному механизму. Алкины могут также вступать в реакции двойного присоединения. При этих реакциях происходит присоединение двух молекул по тройной связи:

Кроме того, алкины вступают в реакции гемолитического расщепления с электрофильными реагентами, например с хлором.

Реакции с галогенами

В присутствии катализатора, например хлорида алюминия или хлорида железа(III), ацетилен вступает в реакцию электрофильного присоединения с хлором или бромом:

В отсутствие катализатора реакция ацетилена с хлором протекает со взрывом, с образованием красного пламени и облаков черной сажи:

Эту реакцию можно наглядно продемонстрировать, заставляя ацетилен и хлор реагировать в момент выделения последнего

С этой целью добавляют смесь дикарбида кальция и перманганата калия к 50%-ному раствору соляной кислоты.

При встряхивании какого-либо алкина с раствором брома в тетрахлорометане происходит, как и в случае алкенов, обесцвечивание раствора:

В происходящей при этом реакции присоединения образуется промежуточное соединение дигалогеноалкен, который можно выделить из реакционной смеси.

Присоединение галогеноводородов

Алкины вступают в реакции электрофильного присоединения с галогеноводородами, однако эти реакции протекают медленнее, чем у соответствующих алкенов:

Следует обратить внимание на то, что присоединение второй молекулы происходит в соответствии с правилом Марковникова. Эта реакция катализируется ионами ртути (II). Образующийся в ней промежуточный продукт, хлороэтилен (винилхлорид), можно выделить из реакционной смеси и подвергнуть полимеризации (см. разд. 18.3).

Реакции алкинов с бромоводородом протекают быстрее, чем с хлороводородом, но медленнее, чем с иодоводородом.

Присоединение водорода

Ацетилен восстанавливается водородом при комнатной температуре в присутствии некоторых металлических катализаторов, например платины или палладия. Вместо них может использоваться никелевый катализатор, однако в этом случае реакция протекает при температуре 150°С:

При использовании модифицированных катализаторов такие реакции алкинов могут приостанавливаться на стадии образования алкенов.

Присоединение воды

При пропускании газообразного ацетилена через раствор серной кислоты и сульфата при температуре около 60 °С происходит образование этаналя

Реакции с металлами и ионами металлов

Атом водорода, связанный с алкинильным атомом углерода, обнаруживает свойства слабой кислоты. Например, натрий может замещать один из атомов водорода в ацетилене, в результате чего образуется дикарбид (ацетилид) натрия:

Эта реакция принадлежит к типу реакций замещения. Она проводится в жидком аммиаке.

Замещение происходит также при пропускании газообразного ацетилена через водно-аммиачные растворы хлорида или нитрата серебра при комнатной температуре. В растворе хлорида образуется красный осадок дикарбида

В растворе нитрата серебра образуется белый осадок ацетилида серебра

Горение

Алкины относятся к эндотермическим соединениям (см. гл. 5). Это означает, что они характеризуются положительными значениями энтальпии образования. Например,

Поэтому горение ацетилена в кислороде протекает как сильно экзотермическая реакция:

Высокая температура, развивающаяся в ходе этой реакции, позволяет использовать ее на практике для кислородно-ацетиленовой сварки.

Сгорание ацетилена на воздухе оказывается неполным. Поскольку ацетилен имеет высокое относительное содержание углерода, он горит очень ярким пламенем из-за образования углеродных частиц.

Полимеризация

При пропускании ацетилена через медную трубку, нагретую до температуры около 300 °С, он полимеризуется с образованием бензола:

В этой реакции медь играет роль катализатора.

Итак, повторим еще раз!

1. Для определения молекулярных формул газообразных углеводородов используется эвдиометрыя. Эта методика основана на измерении объема углеводорода, сжигаемого в избытке кислорода.

2. Температуры плаиления и кипения алифатических углеводородов тем выше, чем больше число входящих в них атомов углерода, а летучесть этих соединений, наоборот, уменьшается с ростом числа атомов углерода.

3. Этилен (этен) получают в лабораторных условиях из этанола или бромоэтана.

4. Ацетилен (этин) получают в лабораторных условиях из дикарбида (ацетилида) кальция.

5. Все алифатические углеводороды сгорают в избытке кислорода с образованием диоксида углерода и воды.

6. Ненасыщенные алифатические углеводороды окисляются под действием подкисленного раствора перманганата калия.

7. Ненасыщенные углеводороды вступают в реакции присоединения с водородом, галогенами и галогеноводородами.

8. При электрофильном присоединении по двойной связи более электроотрицательный атом или группа атомов присоединяются к тому атому углерода, который связан с наименьшим числом атомов водорода. Эта закономерность представляет собой один из вариантов правила Марковникова.

9. Алкены и алкины могут вступать в реакции а) гидратации и б) полимеризации.

10. Алканы вступают в реакции замещения с хлором. Эти реакции протекают по цепному механизму и включают гомолитическое расщепление ковалентных связей. Такие цепные реакции осуществляются в три стадии:

а) стадия инициирования (зарождения цепи);

б) стадия развития цепи;

в) стадия обрыва цепи.

11. Термический крекинг алканов тоже протекает по цепному механизму и включает гомолитическое расщепление ковалентных связей.

12. Каталитический крекинг алканов имеет ионный механизм.

13. Алкены обладают способностью вступать в реакции озонолиза, в результате чего образуются неустойчивые озониды алкенов (оксираны).

14. Алкины вступают в реакции с металлами и, таким образом, обладают кислотными свойствами.


Плавятся и кипят алкины при более высокой температуре, чем алканы и алкены.

Растворимость в воде незначительная, но немного выше, чем у алкенов и алканов.

Растворимость в высокая.

Наиболее широко используемый алкин - ацетилен - обладает такими физическими свойствами:

  • не имеет цвета;
  • не имеет запаха;
  • при нормальных условиях находится в газообразном агрегатном состоянии;
  • обладает меньшей плотностью, чем воздух;
  • температура кипения - минус 83,6 градусов Цельсия;

Химические свойства алкинов

В этих веществах атомы связаны тройной связью, чем и объясняются основные их свойства. Алкины вступают в реакции такого типа:

  • гидрирование;
  • гидрогалогенирование;
  • галогенирование;
  • гидратация;
  • горение.

Давайте рассмотрим их по порядку.

Гидрирование

Химические свойства алкинов позволяют им вступать в реакции такого типа. Это вид химического взаимодействия, при котором молекула вещества присоединяет к себе дополнительные атомы водорода. Вот пример такой химической реакции в случае с пропином:

2Н 2 + C 3 H 4 = С 3 Н 8

Эта реакция происходит в две стадии. На первой молекула пропина присоединяет два атома гидрогена и на второй - столько же.

Галогенирование

Это еще одна реакция, которая входит в химические свойства алкинов. В ее результате молекула ацетиленового углеводорода присоединяет атомы галогенов. К последним относятся такие элементы, как хлор, бром, иод и др.

Вот пример такой реакции в случае с этином:

С 2 Н 2 + 2СІ 2 = С 2 Н 2 СІ 4

Такой же процесс возможен и с другими ацетиленовыми углеводородами.

Гидрогалогенирование

Это также одна из основных реакций, которая входит в химические свойства алкинов. Она заключается в том, что вещество взаимодействует с такими соединениями, как НСІ, НІ, HBr и др. Это химическое взаимодействие происходит в две стадии. Давайте рассмотрим реакцию такого типа на примере с этином:

С 2 Н 2 + НСІ = С 2 Н 3 СІ

С 2 Н 2 СІ + НСІ = С 2 Н 4 СІ 2

Гидратация

Это химическая реакция, которая заключается во взаимодействии с водой. Она тоже происходит в два этапа. Давайте рассмотрим ее на примере с этином:

H 2 O + С 2 Н 2 = С 2 Н 3 ОН

Вещество, которое образуется после первого этапа реакции, называется виниловым спиртом.

В связи с тем, что согласно правилу Эльтекова функциональная группа ОН не может располагаться рядом с двойной связью, происходит перегруппировка атомов, в результате которой из винилового спирта образуется ацетальдегид.

Процесс гидратации алкинов еще называется реакцией Кучерова.

Горение

Это процесс взаимодействия алкинов с кислородом при высокой температуре. Рассмотрим горение веществ этой группы на примере с ацетиленом:

2С 2 Н 2 +2О 2 = 2Н 2 О + 3С + СО 2

При избытке кислорода ацетилен и другие алкины горят без образования карбона. При этом выделяются только оксид карбона и вода. Вот уравнение такой реакции на примере с пропином:

4О 2 + С 3 Н 4 = 2Н 2 О + 3СО 2

Горение других ацетиленовых углеводородов также происходит подобным образом. В результате выделяется вода и углекислый газ.

Другие реакции

Также ацетилены способны реагировать с солями таких металлов, как серебро, медь, кальций. При этом происходит замещение гидрогена атомами металла. Рассмотрим такой вид реакции на примере с ацетиленом и нитратом серебра:

С 2 Н 2 + 2AgNO3 = Ag 2 C 2 + 2NH 4 NO 3 + 2Н 2 О

Еще один интересный процесс с участием алкинов - реакция Зелинского. Это образование бензола из ацетилена при его нагревании до 600 градусов по Цельсию в присутствии активированного угля. Уравнение этой реакции можно выразить таким образом:

3С 2 Н 2 = С 6 Н 6

Также возможна полимеризация алкинов - процесс объединения нескольких молекул вещества в одну полимерную.

Получение

Алкины, реакции с которыми мы рассмотрели выше, получают в лаборатории несколькими методами.

Первый - это дегидрогалогенирование. Выглядит уравнение реакции таким образом:

C 2 H 4 Br 2 + 2КОН = С 2 Н 2 + 2Н 2 О + 2KBr

Для проведения такого процесса необходимо нагреть реагенты, а также добавить этанол в качестве катализатора.

Также есть возможность получения алкинов из неорганических соединений. Вот пример:

СаС 2 + Н 2 О = С 2 Н 2 + 2Са(ОН) 2

Следующий метод получения алкинов - дегидрирование. Вот пример такой реакции:

2СН 4 = 3Н 2 + С 2 Н 2

С помощью реакции подобного типа можно получить не только этин, но и другие ацетиленовые углеводороды.

Применение алкинов

Наибольшее распространение в промышленности получил самый простой алкин - этин. Он широко используется в химической отрасли.

  • Нужен ацетилен и другие алкины для получения из них других таких как кетоны, альдегиды, растворители и др.
  • Также из алкинов можно получить вещества, которые используются при производстве каучуков, поливинилхлорида и др.
  • Из пропина можно получить ацетон в результате ракции Кучерова.
  • Кроме того, ацетилен используется при получении таких химических веществ, как уксусная кислота, ароматические углеводороды, этиловый спирт.
  • Еще ацетилен применяется в качестве топлива с очень высокой теплотой горения.
  • Также реакция горения этина используется для сваривания металлов.
  • Кроме того, с можно получить технический карбон.
  • Также это вещество применяется в автономных светильниках.
  • Ацетилен и ряд других углеводородов этой группы используются в качестве благодаря своей высокой теплоте горения.

На этом применение алкинов заканчивается.

Заключение

В качестве завершающей части приводим краткую таблицу о свойствах ацетиленовых углеводородов и их получении.

Химические свойства алкинов: таблица
Название реакции Пояснения Пример уравнения
Галогенирование Реакция присоединения молекулой ацетиленового углеводорода атомов галогенов (брома, иода, хлора и др.) C 4 H 6 + 2I 2 = С 4 Н 6 І 2
Гидрирование Реакция присоединения молекулой алкина атомов водорода. Происходит в две стадии.

C 3 H 4 + Н 2 = С 3 Н 6

C 3 H 6 + Н 2 = С 3 Н 8

Гидрогалогенирование Реакция присоединения молекулой ацетиленового углеводорода гидрогалогенов (НІ, НСІ, HBr). Происходит в две стадии.

C 2 H 2 + НІ = С 2 Н 3 І

С 2 Н 3 І + НІ = C 2 H 4 I 2

Гидратация Реакция, в основе которой лежит взаимодействие с водой. Происходит в две стадии.

С 2 Н 2 + H 2 O = С 2 Н 3 ОН

C 2 H 3 OH = СН 3 -СНО

Полное окисление (горение) Взаимодействие ацетиленовго углеводорода с кислородом при повышенной температуре. В результате образуется оксид карбона и вода.

2C 2 H 5 + 5О 2 = 2Н 2 О + 4CO 2

2С 2 Н 2 + 2О 2 = Н 2 О + CO 2 + 3С

Реакции с солями металлов Заключаются в том, что атомы металлов замещают атомы гидрогена в молекулах ацетиленовых углеводородов.

С 2 Н 2 + AgNO3 = C 2 Ag 2 + 2NH 4 NO 3 + 2Н 2 О

Получить алкины можно в лабораторных условиях тремя методами:

  • из неорганических соединений;
  • путем дегидрирования органических веществ;
  • способом дегидрогалогенирования органических веществ.

Вот мы и рассмотрели все физические и химические характеристики алкинов, способы их получения, области применения в промышленности.

Алкинами называются ненасыщенные углеводороды, молекулы которых содержат одну тройную связь. Общая формула алкинов

По номенклатуре ИЮПАК наличие тройной связи в молекуле обозначается суффиксом -ин, который заменяет суффикс -ан в названии соответствующего алкана.

Структурная изомерия алкинов, как и алкенов, обусловлена строением углеродной цепи и положением в ней тройной связи.

Строение тройной связи детально рассмотрено в § 3 (см. рис. 3.6, 3.7).

Физические свойства.

По физическим свойствам алкины напоминают алканы и алкены. Низшие алкины представляют собой газы, - жидкости, высшие алкины - твердые вещества. Температуры кипения алкинов несколько выше, чем у соответствующих алкенов.

Способы получения.

1. Общим способом получения алкинов является реакция дегидропалогенироваиия - отщепления двух молекул галогеноводорода от дигалогензамещенных алканов, которые содержат два атома галогена либо у соседних атомов углерода (например, -дибромпропан), либо у одного атома углерода (-дибромпропан). Реакция происходит под действием спиртового раствора гидроксида калия:

2. Важнейший из алкинов - ацетилен - получают в промышленности путем высокотемпературного крекинга метана:

В лаборатории ацетилен можно получить гидролизом карбида кальция:

Химические свойства.

Тройная связь образуется двумя атомами углерода в -гибридном состоянии. Две -связи расположены под углом 180°, а две -связи расположены во взаимно перпендикулярных областях (см. § 3). Наличие -связей обусловливает способность алкинов вступать в реакции электрофильного присоединения. Однако эти реакции для алкинов протекают медленнее, чем для алкенов. Это объясняется тем, что -электронная плотность тройной связи расположена более компактно, чем в алкенах, и поэтому менее доступна для взаимодействия с различными реагентами.

1. Галогенирование. Галогены присоединяются к алкинам в две стадии.

Например, присоединение брома к ацетилену приводит к образованию дибромэтена, который, в свою очередь, реагирует с избытком брома с образованием тетрабромэтана:

2. Гидрогалогенирование. Галогеноводороды присоединяются к тройной связи труднее, чем к двойной. Для активации галогеноводорода используют - сильную кислоту Льюиса. Из ацетилена при этом можно получить винилхлорид (хлорэтен), который используется для получения важного полимера - поливинилхлорида:

3. Гидратация. Присоединение воды к алкинам катализируется солями ртути (II):

На первой стадии реакции образуется непредельный спирт, в котором гидроксогруппа находится непосредственно у атома углерода при двойной связи. Такие спирты принято называть виниловыми или енолами.

Отличительной чертой большинства енолов является их неустойчивость. В момент образования они изомеризуюгпся в более стабильные карбонильные соединения (альдегиды или кетоны) за счет переноса протона от гидроксильной группы к соседнему атому углерода при двойной связи. При этом -связь между атомами углерода разрывается, и образуется -связь между атомом углерода и атомом кислорода. Причиной изомеризации является большая прочность двойной связи по сравнению с двойной связью

В результате реакции гидратации только ацетилен превращается в альдегид, гидратация гомологов ацетилена протекает по правилу Марковникова, и образующиеся енолы изомеризуются в кетоны. Так, например, пропин превращается в ацетон:

4. Кислотные свойства. Особенностью алкинов, имеющих концевую тройную связь, является их способность отщеплять протон под действием сильных оснований, т.е. проявлять слабые кислотные свойства. Возможность отщепления протона обусловлена сильной поляризацией -связи Причиной поляризации является высокая электроотрицательность атома углерода в -гибридном состоянии. Поэтому алкины, в отличие от алкенов и алканов, способны образовывать соли, называемые ацетиленидами:

Ацетилениды серебра и меди (I) легко образуются и выпадают в осадок при пропускании ацетилена через аммиачный раствор оксида серебра или хлорида меди (I) (см. образование этих комплексов в § 15). Эта реакция служит для обнаружения алкинов с тройной связью на конце цепи:

Ацетилениды серебра и меди как соли очень слабых кислот легко разлагаются при действии хлороводородной кислоты с выделением исходного алкина:

Таким образом, используя реакции образования и разложения ацетиленидов, можно выделять алкины из смесей с другими углеводородами.

5. Полимеризация. В присутствии катализаторов алкины могут реагировать друг с другом, причем в зависимости от условий образуются различные продукты. Так, под действием водного раствора ацетилен димеризуется, давая винилацетилен.

Алкины - непредельные (ненасыщенные) углеводороды, имеющие в молекуле одну тройную связь С≡С. Каждая такая связь содержит одну сигма-связь (σ-связь) и две пи-связи (π-связи).

Алкины также называют ацетиленовыми углеводородами. Первый член гомологического ряда - этин - CH≡CH (ацетилен). Общая формула их гомологического ряда - C n H 2n-2 .

Номенклатура и изомерия алкинов

Названия алкинов формируются путем добавления суффикса "ин" к названию алкана с соответствующим числом: этин, пропин, бутин и т.д.

При составлении названия алкина важно учесть, что главная цепь атомов углерода должна обязательно содержать тройную связь. Нумерация атомов углерода в ней начинается с того края, к которому ближе тройная связь. В конце названия указывают атом углерода у которых начинается тройная связь.

Для алкинов характерна изомерия углеродного скелета, положения тройной связи, межклассовая изомерия с алкадиенами.

Пространственная геометрическая изомерия для них невозможна, в виду того, что каждый атом углерода, прилежащий к тройной связи, соединен только с одним единственным заместителем.


Некоторые данные, касающиеся алкинов, надо выучить:

  • В молекулах алканов присутствуют тройные связи, длина которых составляет 0,121 нм
  • Тип гибридизации атомов углерода - sp
  • Валентный угол (между химическими связями) составляет 180°

Ацетилен получают несколькими способами:

  • Пиролиз метана
  • При нагревании метана до 1200-1500 °C происходит димеризация молекул метана, в ходе чего отщепляется водород.

    2CH 4 → (t) CH≡CH + 3H 2

  • Синтез Бертло
  • Осуществляется напрямую, из простых веществ. Протекает на вольтовой (электрической) дуге, в атмосфере водорода.

    2C + H 2 → (t, вольтова дуга) CH≡CH

  • Разложение карбида кальция
  • В результате разложения карбида кальция образуется ацетилен и гидроксид кальция II.

    CaC 2 + 2H 2 O → CH≡CH + Ca(OH) 2

Получение гомологов ацетилена возможно в реакциях дегидрогалогенирования дигалогеналканов, в которых атомы галогена расположены у одного атома углерода или у двух соседних атомов.


Химические свойства алкины

Алкины - ненасыщенные углеводороды, легко вступающие в реакции присоединения. Реакции замещения для них не характерны.


©Беллевич Юрий Сергеевич

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к

Алкины - это непредельные углеводороды, молекулы которых содержат тройную связь. Представитель - ацетилен, гомологи его:

Общая формула - C n H 2 n -2 .

Строение алкинов.

Атомы углерода , которые образуют тройную связь, находятся в sp - гибридизации . σ -связи лежат в плоскости, под углом 180 °С, а π -связи образованы путем перекрывания 2х пар негибридных орбиталей соседних атомов углерода.

Изомерия алкинов.

Для алкинов характерна изомерия углеродного скелета, изомерия положения кратной связи.

Пространственная изомерия не характерна.

Физические свойства алкинов.

В нормальных условиях:

С 2 -С 4 - газы;

С 5 -С 16 - жидкости;

С 17 и более - твердые вещества.

Температуры кипения алкинов выше, чем у соответствующих алканов.

Растворимость в воде незначительна, немного выше, чем у алканов и алкенов , но все равно очень мала. Растворимость в неполярных органических растворителях высокая.

Получение алкинов.

1. Отщепление 2х молекул галогенводорода от дигалогенавконов, которые находятся либо у соседних атомов углерода или у одного. Отщепление происходит под воздействием спиртового раствора щелочи:

2. Действие галогеналканов на соли ацетиленовых углевородородов:

Реакция протекает через образование нуклеофильного карбаниона:

3. Крекинг метана и его гомологов:

В лаборатории ацетилен получают:

Химические свойства алкинов.

Химические свойства алкинов объясняет наличие тройной связи в молекуле алкина. Типичная реакция для алкинов - реакция присоединения, которая протекает в 2 стадии. На первой происходит присоединение и образование двойной связи, а на второй - присоединение к двойной связи. Реакция у алкинов протекает медленнее, чем и алкенов, т.к. электронная плотность тройной связи «размазана» более компактно, чем у алкенов, и поэтому менее доступна для реагентов.

1. Галогенирование. Галогены присоединяются к алкинам в 2 стадии. Например,

А суммарно:

Алкины также как алкены обесцвечивают бромную воду, поэтому эта реакция является качественной и для алкинов.

2. Гидрогалогенирование. Галогенводороды присоединяются к тройной связи несколько тружднее, чем к двойной. Для ускорения (активации) процесса используют сильную кислоту Льюиса - AlCl 3 . Из ацетилена при таких условиях модно получить винилхлорид, который идет на производства полимера - поливинилхлорида, имеющего важнейшее значение в промышлености:

Если же галогенводород в избытке, то реакция (особенно у несимметричных алкинов) идет по правилу Марковникова:

3. Гидратация (присоединение воды). Реакция протекает только в присутствии солей ртути (II) в качестве катализатора:

На 1ой стадии образуется непредельный спирт, в котором гидроксигруппа находится у атома углерода, образующего двойную связь. Такие спирты называются виниловыми или фенолами .

Отличительная черта таких спиртов - неустойчивость. Они изомеризуются в более стабильные карбонильные соединения (альдегиды и кетоны) вследствие переноса протона от ОН -группы к углероду при двойной связи. При этом π -связь рвется (между атомами углерода), и образуется новая π -связь между атомомами углерода и атомом кислорода . Такая изомеризация происходит из-за большей плотности двойной связи С=О по сравнению с С=С.

Только ацетилен превращается в альдегид, его гомологи - в кетоны. Реакция протекает по правила Марковникова:

Эта реакция носит названия - реакции Кучерова .

4. Те алкины, которые имеют концевую тройную связь, могут отщеплять протон под действием сильных кислотных реагентов. Такой процесс обусловлен сильной поляризацией связи .

Причиной поляризации служит сильная электроотрицательность атома углерода в sp -гибридизации, поэтому алкины могут образовывать соли - ацетилениды:

Ацетилениды меди и серебра легко образуются и выпадают в осадок (при пропускании ацетилена через аммиачный раствор оксида серебра или хлорида меди). Эти реакции являются качественными на концевую тройную связь:

Полученные соли легко разлагаются под действием HCl , в результате выделяется исходный алкин:

Поэтому алкины легко выделить из смеси других углеводородоров.

5. Полимеризация. При участии катализаторов алкины могут реагировать друг с другом, причем в зависимости от условий, могут образовываться различные продукты. Например, под воздействием хлорида меди (I) и хлорида аммония:

Винилацетилен (полученное соединение) присоединяет хлороводород, образуя хлорпрен, который служит сырьем для получения синтетического каучука:

6. Если ацетилен пропускать через уголь при 600 ºС, получают ароматическое соединение - бензол. Из гомологов ацетилена, получают гомологи бензола:

7. Реакция окисления и восстановления . Алкины легко окисляются перманганатом калия . Раствор обесцвечивается, т.к. в исходном соединении есть тройная связь. При окислении происходит расщепление тройной связи с образованием карбоновой кислоты:

В присутствие металлических катализаторов происходит восстановление водородом:

Применение алкинов.

На основе алкинов производят много различных соединений, имеющих широкое применение в промышленности. Например, получают изопрен - исходное соединения для производства изопренового каучука.

Ацетилен используют для сварки металлов, т.к. процесс его горения весьма экзотермичный.