Может ли электрическая рыба. Самая электрическая рыба

Электрические рыбы . Люди ещё в глубокой древности обратили внимание, что некоторые рыбы как-то по особенному добывают себе пищу. И лишь совсем недавно, по историческим меркам, стало понятно, как они это делают. Оказывается есть такие рыбы, которые создают электрический разряд. Этот разряд парализует или убивает других рыб и даже совсем не маленьких животных.

Плывёт такая рыбина, плывёт никуда не торопясь. Как только недалеко от неё оказывается другая рыба, создаётся электрический разряд. Всё, обед готов. Можно подплывать и заглатывать парализованную или убитую электрическим током рыбу.

Как же это получается у рыб создавать электрический импульс? Дело в том, что в организме таких рыб имеются самые настоящие батарейки. Их количество и размеры у рыб разные, но принцип действия один и тот же. Именно по такому же принципу устроены современные аккумуляторные батарейки.

Собственно, современные батареи и созданы по образцу и подобию рыбных. Два электрода, между ними электролит. Этот принцип был однажды подсмотрен у электрического ската. много ещё интересных неожиданностей таит природа матушка!

Сегодня в мире насчитывается более трёхсот видов электрических рыб. Они имеют самые разные размеры и вес. Всех их объединяет способность создавать электрический разряд или даже целую серию разрядов. Но всё же считается, что самыми мощными электрическими рыбами являются скаты, сомы и угри.

Электрические скаты имеют плоскую голову и тело. Голова чаще в форме диска. Они имеют небольшой хвост с плавником. Электрические органы расположены по бокам головы. Ещё пара небольших электрических органов расположены на хвосте. Они есть даже у тех скатов, которые не относятся к электрическим.

Электрические скаты могут вырабатывать электрический импульс напряжением до четырёхсот пятидесяти вольт. Этим импульсом они могут не только обездвиживать, но и убивать небольших рыб. Человеку, если он попадёт в зону действия импульса, тоже мало не покажется. Но человек, скорее всего останется жив, хотя наверняка испытает неприятные в своей жизни моменты.

Электрические сомы , так же как и скаты, создают электрический импульс. Его напряжение может быть у крупных сомов, так же как и у скатов, до 450 вольт. При поимке такого сомика, так же можно получить весьма ощутимый удар током. Электрические сомы обитают в водоёмах Африки и достигают размеров до 1 метра. Их вес может быть до 23 килограммов.

Но, самая опасная рыба обитает в водоёмах Южной Америки. Это электрические угри . Они бывают очень немаленьких размеров. Взрослые особи достигают в длину трёх метров и веса до двадцати килограммов. Эти электрические гиганты могут создавать электрический импульс напряжением до одной тысячи двухсот вольт.

Импульсом с таким напряжением они могут убить и довольно крупных животных, оказавшихся некстати рядом. Такой же исход может ожидать и человека. Мощность электрического разряда достигает шести киловатт. Мало не покажется. Вот такие они — живые электростанции.

В теплых и тропических морях, в мутных реках Африки и Южной Америки живет несколько десятков видов рыб, способных временами или постоянно испускать электрические разряды разной силы. Своим электрическим током эти рыбы не только пользуются для защиты и нападения, но и сигнализируют им друг другу и обнаруживают заблаговременно препятствия (электролокация). Электрические органы встречаются только у рыб. У других животных эти органы пока не обнаружены.

Электрические рыбы существуют на Земле уже миллионы лет. Их остатки найдены в очень древних слоях земной коры - в силурийских и девонских отложениях. На древнегреческих вазах встречаются изображения электрического морского ската торпедо. В сочинениях древнегреческих и древнеримских писателей-натуралистов немало упоминаний о чудесной, непонятной силе, которой наделен торпедо. Врачи древнего Рима держали этих скатов у себя в больших аквариумах. Они пытались использовать торпедо для лечения болезней: пациентов заставляли прикасаться к скату, и от ударов электрического тока больные будто бы выздоравливали. Даже в наше время на побережье Средиземного моря и атлантическом берегу Пиренейского полуострова пожилые люди бродят иногда босиком по мелководью, надеясь излечиться от ревматизма или подагры электричеством торпедо.

Электрический скат торпедо.

Очертания тела торпедо напоминают гитару длиной от 30 см до 1,5 м и даже до 2 м. Его кожа принимает цвет, сходный с окружающей средой (см. ст. «Окраска и подражание у животных»). Различные виды торпедо живут в прибрежных водах Средиземного и Красного морей, Индийского и Тихого океанов, у берегов Англии. В некоторых бухтах Португалии и Италии торпедо буквально кишат на песчаном дне.

Электрические разряды торпедо очень сильны. Если этот скат попадет в рыбачью сеть, его ток может пройти по влажным нитям сети и ударить рыбака. Электрические разряды защищают торпедо от хищников - акул и осьминогов - и помогают ему охотиться за мелкой рыбой, которую эти разряды парализуют или даже убивают. Электричество у торпедо вырабатывается в особых органах, своеобразных «электрических батареях». Они находятся между головой и грудными плавниками и состоят из сотен шестигранных столбиков студенистого вещества. Столбики отделены друг от друга плотными перегородочками, к которым подходят нервы. Верхушки и основания столбиков соприкасаются с кожей спины и брюха. Нервы, подходящие к электрическим органам, имеют внутри «батарей» около полумиллиона окончаний.

Скат дископиге глазчатый.

За несколько десятков секунд торпедо испускает сотни и тысячи коротких разрядов, идущих потоком от брюхи к спине. Напряжение тока у разных видов скатов колеблется от 80 до 300 В при силе тока в 7-8 А. В наших морях живут несколько видов колючих скатов райя, среди них черноморский скат - морская лисица. Действие электрических органов у этих скатов гораздо слабее, чем у торпедо. Можно предполагать, что электрические органы служат райя для связи друг с другом, вроде «беспроволочного телеграфа».

В восточной части тихоокеанских тропических вод живет скат дископиге глазчатый. Он занимает как бы промежуточное положение между торпедо и колючими скатами. Питается скат мелкими рачками и легко их добывает, не применяя электрического тока. Его электрические разряды никого не могут убить и, вероятно, служат лишь для того, чтобы отгонять хищников.

Скат морская лисица.

Электрические органы есть не только у скатов. Тело африканского речного сома малаптеруруса обернуто, как шубой, студенистым слоем, в котором образуется электрический ток. На долю электрических органов приходится около четверти веса всего сома. Напряжение разрядов его достигает 360 В, оно опасно даже для человека и, конечно, гибельно для рыб.

Ученые установили, что африканская пресноводная рыба гимнархус всю жизнь непрерывно испускает слабые, но частые электрические сигналы. Ими гимнархус как бы прощупывает пространство вокруг себя. Он уверенно плавает в мутной воде среди водорослей и камней, не задевая телом ни за какие препятствия. Такой же способностью наделены африканская рыба мормирус и родственники электрического угря - южноамериканские гимноты.

Звездочет.

В Индийском, Тихом и Атлантическом океанах, в Средиземном и Черном морях живут небольшие рыбы, до 25 см, редко до 30 см длиной, - звездочеты. Обычно они лежат на прибрежном дне, подкарауливая проплывающую сверху добычу. Поэтому их глаза расположены на верхней стороне головы и смотрят вверх. Отсюда происходит название этих рыб. Некоторые виды звездочетов имеют электрические органы, которые находятся у них на темени, служат, вероятно, для сигнализации, хотя их действие ощутимо и для рыбаков. Тем не менее рыбаки беспрепятственно вылавливают немало звездочетов.

В южноамериканских тропических реках живет электрический угорь. Это серо-синяя змееобразная рыба длиной до 3 м. На долю головы и грудобрюшной части приходится лишь 1 / 5 ее тела. Вдоль остальных 4 / 5 тела с обеих сторон расположены сложные электрические органы. Они состоят из 6-7 тыс. пластинок, отделенных друг от друга тонкой оболочкой и изолированных прокладкой из студенистого вещества.

Пластинки образуют своего рода батарею, разряд которой направлен от хвоста к голове. Напряжения тока, вырабатываемого угрем, достаточно, чтобы убить в воде рыбу или лягушку. Плохо приходится от угрей и людям, купающимся в реке: электрический орган угря развивает напряжение в несколько сотен вольт.

Угорь создает особенно сильное напряжение тока, когда он изогнется дугой так, что жертва находится между его хвостом и головой: получается замкнутое электрическое кольцо. Электрический разряд угря привлекает других угрей, находящихся поблизости.

Этим свойством можно воспользоваться. Разряжая в воду любой источник электричества, удается привлечь целое стадо угрей, надо только подобрать соответствующие напряжение тока и частоту разрядов. Мясо электрического угря в Южной Америке едят. Но ловить его опасно. Один из способов ловли рассчитан на то, что угорь, разрядивший свою батарею, надолго становится безопасен. Поэтому рыбаки поступают так: в реку загоняют стадо коров, угри нападают на них и расходуют свой запас электричества. Прогнав коров из реки, рыбаки бьют угрей острогами.

Подсчитано, что 10 тыс. угрей могли бы дать энергию для движения электропоезда в течение нескольких минут. Но после этого поезду пришлось бы стоять несколько суток, пока угри восстановили бы свой запас электрической энергии.

Исследования советских ученых показали, что многие из обычных, так называемых неэлектрических рыб, которые не имеют специальных электрических органов, все же в состоянии возбуждения способны создавать в воде слабые электрические разряды.

Эти разряды образуют вокруг тела рыб характерные биоэлектрические поля. Установлено, что слабые электрические поля есть у таких рыб, как речной окунь, щука, пескарь, вьюн, карась, красноперка, горбыль и др.

Происходят, например, во многих растениях. Но самым удивительным носителем этой способности являются электрические рыбы. Их дар вырабатывать разряды сильной мощности не доступен ни одному виду животных.

Зачем рыбам электричество

О том, что некоторые рыбы могут сильно «бить» затронувшего их человека или животное, знали еще древние жители морских побережий. Римляне считали, что в этот момент у обитателей глубин выделяется какой-то сильный яд, вследствие которого у жертвы наступает временный паралич. И только с развитием науки и техники стало понятно, что рыбам свойственно создавать электрические разряды разной силы.

Какая рыба - электрическая? Ученые утверждают, что эти способности свойственны почти всем представителям названного вида фауны, просто у большинства из них разряды небольшие, ощутимые только мощными чувствительными приборами. Используют они их для передачи сигналов друг другу - как средство общения. Сила излучаемых сигналов позволяет определить в рыбьей среде, кто есть кто, или, иными словами, выяснить силу своего противника.

Электрические рыбы используют свои особые органы для защиты от врагов, в качестве оружия поражения добычи, а также как локаторы-ориентиры.

Где у рыб электростанция?

Электрические явления в организме рыб заинтересовали ученых, занимающихся явлениями природной энергии. Первые эксперименты по изучению биологического электричества проводил Фарадей. Для своих опытов он использовал скатов как самых сильных производителей зарядов.

Одно, на чем сошлись все исследователи, что основная роль в электрогенезе принадлежит клеточным мембранам, которые способны раскладывать положительные и отрицательные ионы в клетках, в зависимости от возбуждения. Видоизмененные мышцы соединены между собой последовательно, это и есть так называемые электростанции, а соединительные ткани - проводники.

"Энергодобывающие" органы могут иметь самый различный вид и место размещения. Так, у скатов и угрей это почкообразные образования по бокам, у рыб-слонов - цилиндрические нити в районе хвоста.

Как уже было сказано, производить ток в том или ином масштабе свойственно многим представителям этого класса, но есть настоящие электрические рыбы, которые опасны не только для других животных, но и для человека.

Электрическая рыба-змея

Южноамериканский электрический угорь не имеет ничего общего с обычными угрями. Назван он так просто по внешнему сходству. Эта длинная, до 3 метров, змееобразная рыба весом до 40 кг способна генерировать разряд напряжением в 600 вольт! Тесное общение с такой рыбешкой может стоить жизни. Даже если сила тока не станет непосредственной причиной смерти, то к потере сознания приводит точно. А беспомощный человек может захлебнуться и утонуть.

Электрические угри живут в Амазонке, во многих неглубоких реках. Местное население, зная их способности, не заходит в воду. Электрическое поле, производимое рыбой-змеей, расходится в радиусе 3 метров. При этом угорь проявляет агрессию и может нападать без особой на то надобности. Наверное, он это делает с перепугу, так как основной рацион его составляет мелкая рыбешка. В этом плане живая «электроудочка» не знает никаких проблем: выпустил зарядик, и завтрак готов, обед и ужин заодно.

Семейство скатов

Электрические рыбы - скаты - объединяются в три семейства и насчитывают около сорока видов. Им свойственно не только вырабатывать электричество, но и аккумулировать его, чтобы использовать в дальнейшем по назначению.

Основная цель выстрелов - отпугивание врагов и добыча мелкой рыбешки для пропитания. Если скат выпустит за один раз весь свой накопленный заряд, его мощности хватит, чтобы убить или обездвижить крупное животное. Но такое происходит крайне редко, так как рыба - скат электрический - после полного «обесточивания» становится слабой и уязвимой, ей требуется время, чтобы снова накопить мощность. Так что свою систему энергоснабжения скаты строго контролируют с помощью одного из отделов мозга, который выполняет роль реле-выключателя.

Семейство гнюсовых, или электрических скатов, называют еще «торпедами». Самый крупный из них - обитатель Атлантического океана, черный торпедо (Torpedo nobiliana). Этот которые достигают в длину 180 см, вырабатывает самый сильный ток. И при близком контакте с ним человек может потерять сознание.

Скат Морсби и токийский торпедо (Torpedo tokionis) - самые глубоководные представители своего семейства. Их можно встретить на глубине 1 000 м. А самый маленький среди своих собратьев - индийский скат, его максимальная длина - всего 13 см. У берегов Новой Зеландии живет слепой скат - его глаза полностью спрятаны под слоем кожи.

Электрический сом

В мутных водоемах тропической и субтропической Африки живут электрические рыбы - сомы. Это довольно крупные особи, от 1 до 3 м в длину. Сомы не любят быстрых течений, живут в уютных гнездах на дне водоемов. Электрические органы, которые расположены по бокам рыбы, способны производить напряжение в 350 В.

Малоподвижный и апатичный сом не любит уплывать далеко от своего жилища, выползает из него для охоты по ночам, но также и непрошеных гостей не любит. Встречает он их легкими электрическими волнами, ими же и добывает себе добычу. Разряды помогают сому не только охотиться, но и ориентироваться в темной мутной воде. Мясо электрического сома считается деликатесом у местного африканского населения.

Нильский дракончик

Еще один африканский электрический представитель царства рыб - нильский гимнарх, или аба-аба. Его изображали на своих фресках фараоны. Обитает он не только в Ниле, но в водах Конго, Нигера и некоторых озер. Это красивая «стильная» рыбка с длинным изящным телом, длиной от сорока сантиметров до полутора метров. Нижние плавники отсутствуют, зато один верхний тянется вдоль всего тела. Под ним и находится «батарейка», которая производит электромагнитные волны силой 25 В практически постоянно. Голова гимнарха несет положительный заряд, а хвост - отрицательный.

Свои электрические способности гимнархи используют не только для поиска пищи и локации, но и в брачных играх. Кстати, самцы гимнархов просто потрясающе фанатичные отцы. Они не отходят от кладки икринок. И стоит только приблизится кому-то к детям, папа так окатит нарушителя электрошокером, что мало не покажется.

Гимнархи очень симпатичны - их вытянутая, похожая на дракончика, мордочка и хитрые глазки снискали любовь среди аквариумистов. Правда, симпатяга довольно агрессивен. Из нескольких мальков, поселенных в аквариум, в живых останется только один.

Морская корова

Большие выпуклые глаза, вечно приоткрытый рот, обрамленный бахромой, выдвинутая челюсть делают рыбу похожей на вечно недовольную сварливую старуху. Как называется электрическая рыба с таким портретом? семейства звездочетов. Сравнение с коровой навевают два рожка на голове.

Эта неприятная особь большую часть времени проводит, зарывшись в песок и подстерегая проплывающую мимо добычу. Враг не пройдет: корова вооружена, как говорится, до зубов. Первая линия нападения - длинный красный язычок-червячок, которым звездочет заманивает наивных рыбок и ловит их, даже не вылезая из укрытия. Но если надо, то она взметнется мгновенно и оглушит жертву до потери сознания. Второе оружие для собственной защиты - позади глаз и над плавниками расположены ядовитые шипы. И это еще не все! Третье мощное орудие расположено сзади головы - электрические органы, которые генерируют заряды напряжением в 50 В.

Кто еще электрический

Вышеописанные - это не единственные электрические рыбы. Названия не перечисленных нами звучат так: гнатонем Петерса, черная ножетелка, мормиры, диплобатисы. Как видите, их немало. Наука сделала большой шаг вперед в изучении этой странной способности некоторых рыб, но разгадать полностью механизм аккумуляции электроэнергии большой мощности полностью не удалось и до нынешнего времени.

Рыбы лечат?

Официальная медицина не подтвердила обладание электромагнитного поля рыб целебным эффектом. Но медицина народная издавна использует электрические волны скатов для излечения многих болезней ревматического характера. Для этого люди специально прогуливаются вблизи и получают слабые разряды. Вот такой себе натуральный электрофорез.

Электрических сомов жители Африки и Египта используют для лечения тяжелой стадии лихорадки. Для повышения иммунитета у детей и укрепления обшего состояния экваториальные жители заставляют тех прикасатся к сомам, а также поят водой, в которой некоторое время плавала эта рыба.

Говоря о возможности использования рыбами магнитного поля Земли для целей навигации, естественно поставить вопрос, а могут ли они вообще воспринимать это поле.

На магнитное поле Земли в принципе могут реагировать как специализированные, так и неспециализированные системы. В настоящее время не доказано, что у рыб имеются чувствительные к этому полю специализированные рецепторы.

Как воспринимают магнитное поле Земли неспециализированные системы? Более 40 лет назад было высказано предположение, что основой таких механизмов могут быть токи индукции, возникающие в теле рыб при их движении в магнитном поле Земли. Одни исследователи считали, что рыбы во время миграций используют электрические индукционные токи, возникающие в результате движения (течения) воды в магнитном поле Земли. Другие полагали, что некоторые глубоководные рыбы используют индукционные токи, возникающие в их теле при движении.

Рассчитано, что при скорости движения рыбы 1 см в секунду на 1 см длины тела устанавливается разность потенциалов около 0,2-0,5 мкВ. Многие электрические рыбы, обладающие специальными электрорецепторами, воспринимают напряженность электрических полей еще меньшей величины (0,1-0,01 мкВ на 1 см). Таким образом, в принципе они могут ориентироваться на магнитное поле Земли при активном перемещении или пассивном сносе (дрейфе) в потоках воды.

Анализируя график пороговой чувствительности гимнарха, советский ученый А. Р. Сакаян сделал вывод, что эта рыба чувствует количество протекающего в ее теле электричества, и высказал предположение о способности слабоэлектрических рыб определять направление своего пути по магнитному полю Земли.

Сакаян рассматривает рыбу как замкнутый электрический контур. При движении рыбы в магнитном поле Земли по ее телу в результате индукции в вертикальном направлении проходит электрический ток. Количество электричества в теле рыбы при ее перемещении зависит только от взаимного расположения в пространстве направления пути и линии горизонтальной составляющей магнитного поля Земли. Следовательно, если рыба реагирует на количество электричества, протекающего через ее тело, она может определить свой путь и его направление в магнитном поле Земли.

Таким образом, хотя вопрос об электронавигационном механизме слабоэлектрических рыб еще окончательно не выяснен, принципиальная возможность использования ими токов индукции не вызывает сомнений.

Электрические рыбы в значительном большинстве - «оседлые», немигрантные формы. У мигрантных неэлектрических видов рыб (тресковые, сельдевые и др.) электрических рецепторов и высокой чувствительности к электрическим полям не обнаружено: обычно она не превышает 10 мВ на 1 см, что в 20 000 раз ниже напряженности электрических полей, обусловленных индукцией. Исключением являются неэлектрические рыбы (акулы, скаты и др.), имеющие особые электрорецепторы. При движении со скоростью 1 м/с они могут воспринимать индуцированное электрическое поле напряженностью 0,2 мкВ на 1 см. Электрические рыбы чувствительнее неэлектрических к электрическим полям примерно в 10 000 раз. Это говорит о том, что неэлектрические виды рыб не могут ориентироваться на магнитное поле Земли, используя токи индукции. Остановимся на возможности использования рыбами биоэлектрических полей при миграциях.

Практически все типично мигрирующие рыбы - стайные виды (сельдевые, тресковые и др.). Исключение составляет только угорь, но, переходя в мигрантное состояние, он претерпевает сложный метаморфоз, что, возможно, сказывается на генерируемых электрических полях.

В период миграции рыбы образуют плотные организованные стаи, движущиеся в определенном направлении. Небольшие косячки этих же рыб не могут определить направление миграции.

Почему же рыбы мигрируют в стаях? Некоторые исследователи объясняют это тем, что по законам гидродинамики движение рыб в стаях определенной конфигурации облегчается. Однако существует и другая сторона этого явления. Как уже говорилось, в возбужденных стайках рыб биоэлектрические поля отдельных особей суммируются. В зависимости от количества рыб, степени их возбуждения и синхронности излучения общее электрическое поле может значительно превышать объемные размеры самой стаи. В подобных случаях напряжение, приходящееся на одну рыбу, может достигать такой величины, что она способна воспринимать электрическое поле стаи даже при отсутствии электрорецепторов. Следовательно, рыбы могут использовать электрическое поле стаи в целях навигации благодаря его взаимодействию с магнитным полем Земли.

А как ориентируются в океане нестайные рыбы-мигранты - угри и тихоокеанские лососи, совершающие длительные миграции? Европейский угорь, например, становясь половозрелым, направляется из рек в Балтийское море, затем в Северное море, попадает в Гольфстрим, движется в нем против течения, пересекает Атлантический океан и приходит в Саргассово море, где он размножается на большой глубине. Следовательно, угорь не может ориентироваться ни по Солнцу, ни по звездам (по ним ориентируются во время миграций птицы). Естественно возникает предположение, что, так как большую часть своего пути угорь проходит, находясь в Гольфстриме, он использует для ориентации течение.

Попробуем представить, как ориентируется угорь, находясь внутри многокилометровой толщи движущейся воды (химическая ориентация в этом случае исключается) . В толще воды, все струйки которой перемещаются параллельно (подобные потоки называются ламинарными), угорь движется в одном направлении с водой. В этих условиях его боковая линия - орган, позволяющий воспринимать локальные потоки воды и поля давления,- работать не может. Точно так же, плывя по реке, человек не ощущает ее течения, если не смотрит на берег.

Может быть, морское течение не играет никакой роли в механизме ориентации угря и его миграционные пути случайно совпадают с Гольфстримом? Если так, то какие же сигналы окружающей среды использует угорь, чем он руководствуется при ориентации?

Остается предположить, что угорь и тихоокеанский лосось используют в своем ориентационном механизме магнитное поле Земли. Однако специализированных систем для его восприятия у рыб не обнаружено. Но о ходе опытов по выяснению чувствительности рыб к магнитным полям оказалось, что и угри, и тихоокеанские лососи обладают исключительно высокой чувствительностью к электрическим токам в воде, направленным перпендикулярно оси их тела. Так, чувствительность тихоокеанских лососей к плотности тока составляет 0,15*10 -2 мкА на 1 см 2 , а угря - 0,167*10 -2 на 1 см 2 .

Была высказана мысль об использовании угрем и тихоокеанскими лососями геоэлектрических токов, создаваемых в воде океана течениями. Вода - проводник, движущийся в магнитном поле Земли. Возникающая в результате индукции электродвижущая сила прямо пропорциональна напряженности магнитного поля Земли в данной точке океана и определенной скорости течения.

Группа американских ученых на трассе движения угря провела инструментальные замеры и расчеты величин возникающих геоэлектрических токов. Выяснилось, что плотности геоэлектрических токов составляют 0,0175 мкА на 1 см 2 , т. е. почти в 10 раз выше чувствительности к ним рыб-мигрантов. Последующие опыты подтвердили, что угри и тихоокеанские лососи избирательно относятся к токам с подобной плотностью. Стало очевидно, что угорь и тихоокеанские лососи могут использовать для своей ориентации при миграциях в океане магнитное поло Земли и морские течения благодаря восприятию геоэлектрических токов.

Советский ученый А. Т. Миронов предположил, что при ориентации рыбы используют теллурические токи, впервые обнаруженные им в 1934 г. Механизм возникновения этих токов Миронов объясняет геофизическими процессами. Академик В. В. Шулейкин связывает их с электромагнитными полями в космосе.

В настоящее время работами сотрудников Института земного магнетизма и распространения радиоволн в ионосфере АН СССР установлено, что постоянная составляющая полей, образуемых теллурическими токами, не превышает напряженности 1 мкВ на 1 м.

Советский ученый И. И. Рокитянский предположил, что, поскольку теллурические поля являются индукционными полями с разными амплитудами, периодами и направлениями векторов, рыбы стремятся уходить в места, где величина теллурических токов меньше. Если это предположение правильно, то в период магнитных бурь, когда напряженность теллурических полей достигает десятков - сотен микровольт на метр, рыбы должны уходить от берегов и с мелких мест, а следовательно, и с промысловых банок в глубоководные районы, где величина теллурических полей меньше. Изучение взаимосвязи поведения рыб с магнитной активностью позволит подойти к разработке способов прогнозирования их промысловых скоплений в определенных районах. Сотрудники Института земного магнетизма и распространения радиоволн в ионосфере и Института эволюционной морфологии и экологии животных АН СССР провели работу, в которой при сопоставлении уловов норвежской сельди с магнитными бурями была выявлена определенная корреляция. Однако все это требует экспериментальной проверки.

Как уже говорилось выше, у рыб существуют шесть систем сигнализации. А не пользуются ли они еще каким-нибудь чувством, пока не известным?

В США в газете «Новости электроники» за 1965 и 1966 гг. было опубликовано сообщение об открытии У. Минто особых «гидронических» сигналов новой природы, используемых рыбами для связи и локации; причем у некоторых рыб они регистрировались на большом расстоянии (у макрели до 914 м). Подчеркивалось, что «гидроническое» излучение нельзя объяснить электрическими полями, радиоволнами, звуковыми сигналами или другими ранее известными явлениями: гидронические волны распространяются только в воде, их частота колеблется от долей герца до десятков мегагерц.

Сообщалось, что сигналы были открыты при исследовании звуков, издаваемых рыбами. Среди них выделены частотно-модулированные, используемые для локации, и амплитудно-модулированные, излучаемые большинством рыб и предназначенные для связи. Первые напоминают короткий свист, или «чириканье», а вторые - «щебетанье».

У. Минто и Дж. Хадсон сообщили, что гидроническое излучение свойственно практически всем видам, но особенно сильно эта способность развита у хищников, рыб со слаборазвитыми глазами и у охотящихся ночью. Ориентационные сигналы (сигналы локации) рыбы испускают в новой обстановке или при исследовании незнакомых объектов. Сигналы связи наблюдаются в группе особей после возвращения рыбы, побывавшей в незнакомой обстановке.

Что же побудило Минто и Хадсона считать «гидронические» сигналы проявлением не известного ранее физического явления? По их мнению, эти сигналы не акустические, потому что их можно воспринимать непосредственно на электроды. В то же время «гидронические» сигналы нельзя отнести и к электромагнитным колебаниям, по мнению Минто и Хадсона, так как в отличие от обычных электрических они состоят из импульсов, не имеющих постоянного характера и длящихся несколько миллисекунд.

Однако с такими взглядами трудно согласиться. У электрических и неэлектрических рыб сигналы очень разнообразны по форме, амплитуде, частоте и длительности, в связи с чем такие же свойства «гидронических» сигналов не говорят об их особой природе.

Последняя «необычная» особенность «гидронических» сигналов - их распространение на расстояние 1000 м - также может быть объяснена на основании известных положений физики. Минто и Хадсон не проводили лабораторных экспериментов на одной особи (данные таких опытов свидетельствуют, что сигналы отдельных неэлектрических рыб распространяются на небольшие расстояния). Они регистрировали сигналы от косяков и стай рыб в морских условиях. Но, как уже говорилось, в подобных условиях может суммироваться напряженность биоэлектрических полей рыб, и единое электрическое пола стаи удается уловить на значительном расстоянии.

На основании изложенного выше можно сделать вывод, что в работах Минто и Хадсона необходимо различать две стороны: фактическую, из которой следует, что неэлектрические виды рыб способны генерировать электрические сигналы, и «теоретическую» - бездоказательное утверждение, что эти разряды имеют особую, так называемую гидроническую природу.

В 1968 г. советский ученый Г. А. Остроумов, не вдаваясь в биологические механизмы генерации и приема электромагнитных сигналов морскими животными, а исходя из фундаментальных положений физики, произвел теоретические расчеты, которые привели его к заключению, что Минто и его последователи ошибаются, приписывая особую физическую природу «гидроническим» сигналам. В сущности, это обычные электромагнитные процессы.

<<< Назад
Вперед >>>

Расскажите об электрических рыбах. Какой величины ток они вырабатывают?

Электрический сом.

Электрический угорь.

Электрический скат.

В. Кумушкин (г. Петрозаводск).

Среди электрических рыб первенство принадлежит электрическому угрю, живущему в притоках Амазонки и других реках Южной Америки. Взрослые особи угря достигают двух с половиной метров. Электрические органы - преобразованные мышцы - располагаются у угря по бокам, простираясь вдоль позвоночника на 80 процентов всей длины рыбы. Это своеобразная батарея, плюс которой находится в передней части тела, а минус - в задней. Живая батарея вырабатывает напряжение около 350, а у самых крупных особей - до 650 вольт. При мгновенной силе тока до 1-2 ампер такой разряд способен свалить с ног человека. С помощью электрических разрядов угорь защищается от врагов и добывает себе пропитание.

В реках Экваториальной Африки обитает другая рыба - электрический сом. Размеры его поменьше - от 60 до 100 см. Специальные железы, вырабатывающие электричество, составляют около 25 процентов общего веса рыбы. Электрический ток достигает напряжения 360 вольт. Известны случаи электрического шока у людей, купавшихся в реке и нечаянно наступивших на такого сома. Если электрический сом попадается на удочку, то и рыболов может получить весьма ощутимый удар током, прошедшим по мокрым леске и удилищу к его руке.

Однако умело направленные электрические разряды можно использовать в лечебных целях. Известно, что электрический сом занимал почетное место в арсенале народной медицины у древних египтян.

Вырабатывать весьма значительную электрическую энергию способны и электрические скаты. Их насчитывается более 30 видов. Эти малоподвижные обитатели дна, размером от 15 до 180 см, распространены главным образом в прибрежной зоне тропических и субтропических вод всех океанов. Затаившись на дне, иногда наполовину погрузившись в песок или ил, они парализуют свою добычу (других рыб) разрядом тока, напряжение которого у разных видов скатов бывает от 8 до 220 вольт. Скат может нанести значительный удар током и человеку, случайно соприкоснувшемуся с ним.

Помимо электрических зарядов большой силы рыбы способны вырабатывать и низковольтный, слабый по силе ток. Благодаря ритмическим разрядам слабого тока с частотой от 1 до 2000 импульсов в секунду, они даже в мутной воде превосходно ориентируются и сигнализируют друг другу о возникающей опасности. Таковы мормирусы и гимнархи, обитающие в мутных водах рек, озер и болот Африки.

Вообще же, как показали экспериментальные исследования, практически все рыбы, и морские, и пресноводные, способны излучать очень слабые электрические разряды, которые можно уловить лишь с помощью специальных приборов. Эти разряды играют важную роль в поведенческих реакциях рыб, особенно тех, которые постоянно держатся большими стаями.