Основы анатомии. Известные отечественные ученые-биологи и их открытия Известные анатомы

Анатомия и физиология

Учебник

ВВЕДЕНИЕ

Анатомия и физиология человека относится к числу биологических дисциплин, составляющих основу теоретической и практической подготовки педагогов, спортсменов, врачей и медицинских сестер.
Анатомия - это наука, которая изучает форму и строение организма в связи с его функциями, развитием и под воздействием окружающей среды.
Физиология - наука о закономерностях процессов жизнедеятельности живого организма, его органов, тканей и клеток, их взаимосвязи при изменении различных условий и состояния организма.
Анатомия и физиология человека тесно связаны со всеми медицинскими специальностями. Их достижения постоянно оказывают влияние на практическую медицину. Невозможно проводить квалифицированное лечение, не зная хорошо анатомии и физиологии человека. Поэтому прежде чем изучать клинические дисциплины, изучают анатомию и физиологию. Эти предметы составляют фундамент медицинского образования и вообще медицинской науки.
Строение тела человека по системам изучает систематическая (нормальная) анатомия.
Строение тела человека по областям с учетом положения органов и их взаимоотношения между собой, со скелетом изучает топографическая анатомия.
Пластическая анатомия рассматривает внешние формы и пропорции тела человека, а также топографию органов в связи с необходимостью объяснения особенностей телосложения; возрастная анатомия - строение тела человека в зависимости от возраста.
Патологическая анатомия изучает поврежденные той или иной болезнью органы и ткани.
Совокупность физиологических знаний делят на ряд отдельных, но взаимосвязанных направлений - общую, специальную (или частную) и прикладную физиологию.
Общая физиология включает сведения, которые касаются природы основных жизненных процессов, общих проявлений жизнедеятельности, таких как метаболизм органов и тканей, общие закономерности реагирования организма (раздражение, возбуждение, торможение) и его структур на воздействие среды.
Специальная (частная) физиология исследует особенности отдельных тканей (мышечной, нервной и др.), органов (печени, почек, сердца и др.), закономерности объединения их в системы (системы дыхания, пищеварения, кровообращения).
Прикладная физиология изучает закономерности проявлений деятельности человека в связи со специальными задачами и условиями (физиология труда, питания, спорта).
Физиологию условно принято разделять на нормальную и патологическую. Первая изучает закономерности жизнедеятельности здорового организма, механизмы адаптации функций на воздействие разных факторов и устойчивость организма. Патологическая физиология рассматривает изменения функций больного организма, выясняет общие закономерности появления и развития патологических процессов в организме, а также механизмы выздоровления и реабилитации.



Краткая история развития анатомии и физиологии

Развитие и формирование представлений об анатомии и физиологии начинаются с глубокой древности.
Среди первых известных истории ученых-анатомов следует назвать Алкемона из Кратоны, который жил в V в. до н. э. Он первый начал анатомировать (вскрывать) трупы животных, чтобы изучить строение их тела, и высказал предположение о том, что органы чувств имеют связь непосредственно с головным мозгом, и восприятие чувств зависит от мозга.
Гиппократ (ок. 460 - ок. 370 до н. э.) - один из выдающихся ученых медицины Древней Греции. Изучению анатомии, эмбриологии и физиологии он придавал первостепенное значение, считая их основой всей медицины. Он собрал и систематизировал наблюдения о строении тела человека, описал кости крыши черепа и соединения костей при помощи швов, строение позвонков, ребер, внутренние органы, орган зрения, мышцы, крупные сосуды.
Выдающимися учеными-естествоиспытателями своего времени были Платон (427-347 до н. э.) и Аристотель (384-322 до н. э.). Изучая анатомию и эмбриологию, Платон выявил, что головной мозг позвоночных животных развивается в передних отделах спинного мозга. Аристотель, вскрывая трупы животных, описал их внутренние органы, сухожилия, нервы, кости и хрящи. По его мнению, главным органом в организме является сердце. Он назвал самый крупный кровеносный сосуд аортой.
Большое влияние на развитие медицинской науки и анатомии имела Александрийская школа врачей, которая была создана в III в. до н. э. Врачам этой школы разрешалось вскрывать трупы людей в научных целях. В этот период стали известны имена двух выдающихся ученых-анатомов: Герофила (род. ок. 300 до н. э.) и Эрасистрата (ок. 300 - ок. 240 до н. э.). Герофил описал оболочки головного мозга и венозные пазухи, желудочки мозга и сосудистые сплетения, глазной нерв и глазное яблоко, двенадцатиперстную кишку и сосуды брыжейки, простату. Эрасистрат достаточно полно для своего времени описал печень, желчные протоки, сердце и его клапаны; знал, что кровь из легкого поступает в левое предсердие, затем в левый желудочек сердца, а оттуда по артериям к органам. Александрийской школе медицины принадлежит также открытие способа перевязки кровеносных сосудов при кровотечении.
Самым выдающимся ученым в разных областях медицины после Гиппократа стал римский анатом и физиолог Клавдий Гален (ок. 130 - ок. 201). Он впервые начал читать курс анатомии человека, сопровождая вскрытием трупов животных, главным образом обезьян. Вскрытие человеческих трупов в то время было запрещено, в результате чего Гален, факты без должных оговорок, переносил на человека строение тела животного. Обладая энциклопедическими знаниями, он описал 7 пар (из 12) черепных нервов, соединительную ткань, нервы мышц, кровеносные сосуды печени, почек и других внутренних органов, надкостницу, связки.
Важные сведения получены Галеном о строении головного мозга. Гален считал его центром чувствительности тела и причиной произвольных движений. В книге «О частях тела человеческого» он высказывал свои анатомические взгляды и рассматривал анатомическое структуры в неразрывной связи с функцией.
Авторитет Галена был очень большой. По его книгам учились медицине почти на протяжении 13 веков.
Большой вклад в развитие медицинской науки внес таджикский врач и философ Абу Али Ибн Сына, или Авиценна (ок. 980-1037). Он написал «Канон врачебной науки», в котором были систематизированы и дополнены сведения по анатомии и физиологии, заимствованные из книг Аристотеля и Галена. Книги Авиценны были переведены на латинский язык и переиздавались более 30 раз.
Начиная с XVI-XVIII вв. во многих странах открываются университеты, выделяются медицинские факультеты, закладывается фундамент научной анатомии и физиологии. Особенно большой вклад в развитие анатомии внес итальянский ученый и художник эпохи Возрождения Леонардо да Винчи (1452-1519). Он анатомировал 30 трупов, сделал множество рисунков костей, мышц, внутренних органов, снабдив их письменными пояснениями. Леонардо да Винчи положил начало пластической анатомии.
Основателем научной анатомии считается профессор Падуанского университета Андрас Везалий (1514-1564), который на основе собственных наблюдений, сделанных при вскрытии трупов, написал классический труд в 7 книгах «О строении человеческого тела» (Базель, 1543). В них он систематизировал скелет, связки, мышцы, сосуды, нервы, внутренние органы, мозг и органы чувств. Исследования Везалия и выход в свет его книг способствовали развитию анатомии. В дальнейшем его ученики и последователи в XVI-XVII вв. сделали много открытий, детально описали многие органы человека. С именами этих ученых в анатомии связаны названия некоторых органов тела человека: Г. Фаллопий (1523-1562) - фаллопиевы трубы; Б. Евстахий (1510-1574) - евстахиева труба; М. Мальпиги (1628- 1694) - мальпигиевы тельца в селезенке и почках.
Открытия в анатомии послужили основой для более глубоких исследований в области физиологии. Испанский врач Мигель Сервет (1511-1553), ученик Везалия Р. Коломбо (1516-1559) высказали предположение о переходе крови из правой половины сердца в левую через легочные сосуды. После многочисленных исследований английский ученый Уильям Гарвей (1578-1657) издал книгу «Анатомическое исследование о движении сердца и крови у животных» (1628), где привел доказательство движения крови по сосудам большого круга кровообращения, а также отметил наличие мелких сосудов (капилляров) между артериями и венами. Эти сосуды были открыты позже, в 1661 г., основателем микроскопической анатомии М. Мальпиги.
Кроме того, У. Гарвей ввел в практику научных исследований вивисекцию, что позволяло наблюдать работу органов животного при помощи разрезов тканей. Открытие учения о кровообращении принято считать датой основания физиологии животных.
Одновременно с открытием У. Гарвея вышел в свет труд Каспаро Азелли (1591-1626), в котором он сделал анатомическое описание лимфатических сосудов брыжейки тонкой кишки.
На протяжении XVII-XVIII вв. появляются не только новые открытия в области анатомии, но и начинает выделяться ряд новых дисциплин: гистология, эмбриология, несколько позже - сравнительная и топографическая анатомия, антропология.
Для развития эволюционной морфологии большую роль сыграло учение Ч. Дарвина (1809-1882) о влиянии внешних факторов на развитие форм и структур организмов, а также на наследственность их потомства.
Клеточная теория Т. Шванна (1810-1882), эволюционная теория Ч. Дарвина поставили перед анатомической наукой ряд новых задач: не только описывать, но и объяснять строение тела человека, его особенности, раскрывать в анатомических структурах филогенетическое прошлое, разъяснять, как сложились в процессе исторического развития человека его индивидуальные признаки.
К наиболее значительным достижениям XVII-XVIII вв. относится сформулированное французским философом и физиологом Рене Декартом представление об «отраженной деятельности организма». Он внес в физиологию понятие о рефлексе. Открытие Декарта послужило основанием для дальнейшего развития физиологии на материалистической основе. Позже представления о нервном рефлексе, рефлекторной дуге, значении нервной системы во взаимоотношении между внешней средой и организмом получили развитие в трудах известного чешского анатома и физиолога Г. Прохаски (1748-1820). Достижения физики и химии позволили применять в анатомии и физиологии более точные методы исследований.
В XVIII-XIX вв. особенно значительный вклад в области анатомии и физиологии был внесен рядом российских ученых. М. В. Ломоносов (1711-1765) открыл закон сохранения материи и энергии, высказал мысль об образовании тепла в самом организме, сформулировал трехкомпонентную теорию цветного зрения, дал первую классификацию вкусовых ощущений. Ученик М. В. Ломоносова А. П. Протасов (1724-1796) - автор многих работ по изучению телосложения человека, строения и функций желудка.
Профессор Московского университета С. Г. Забелин (1735-1802) читал лекции по анатомии и издал книгу «Слово о сложениях тела человеческого и способах, как оные предохранять от болезней», где высказал мысль об общности происхождения животных и человека.
В 1783 г. Я. М. Амбодик-Максимович (1744-1812) опубликовал «Анатомо-физиологический словарь» на русском, латинском и французском языках, а в 1788 г. А. М. Шумлян-ский (1748-1795) в своей книге описал капсулу почечного клубочка и мочевые канальцы.
Значительное место в развитии анатомии принадлежит Е. О. Мухину (1766-1850), который на протяжении многих лет преподавал анатомию, написал учебное пособие «Курс анатомии».
Основателем топографической анатомии является Н. И. Пирогов (1810-1881). Он разработал оригинальный метод исследования тела человека на распилах замороженных трупов. Автор таких известных книг, как «Полный курс прикладной анатомии человеческого тела» и «Топографическая анатомия, иллюстрированная разрезами, проведенными через замороженное тело человека в трех направлениях». Особенно тщательно Н. И. Пирогов изучал и описал фасции, их соотношение с кровеносными сосудами, придавая им большое практическое значение. Свои исследования он обобщил в книге «Хирургическая анатомия артериальных стволов и фасций».
Функциональную анатомию основал анатом П. Ф. Лес-гафт (1837-1909). Его положения о возможности изменения структуры организма человека путем воздействия физических упражнений на функции организма положены в основу теории и практики физического воспитания. .
П. Ф. Лесгафт один из первых применил метод рентгенографии для анатомических исследований, экспериментальный метод на животных и методы математического анализа.
Вопросам эмбриологии были посвящены работы известных российских ученых К. Ф. Вольфа, К. М. Бэра и X. И. Пандера.
В XX в. успешно разрабатывали функциональные и экспериментальные направления в анатомии такие ученые-исследователи, как В. Н. Тонков (1872-1954), Б. А. Долго-Сабуров (1890-1960), В. Н. Шевкуненко (1872-1952), В. П. Воробьев(1876-1937),Д.А.Жданов(1908-1971)идругие.
Формированию физиологии как самостоятельной науки вXX в. значительно способствовали успехи в области физики и химии, которые дали исследователям точные методические приемы, позволившие охарактеризовать физическую и химическую суть физиологических процессов.
И. М. Сеченов (1829-1905) вошел в историю науки как первый экспериментальный исследователь сложного в области природы явления - сознания. Кроме того, он был первым, кому удалось изучить растворенные в крови газы, установить относительную эффективность влияния различных ионов на физико-химические процессы в живом организме, выяснить явление суммации в центральной нервной системе (ЦНС). Наибольшую известность И. М. Сеченов получил после открытия процесса торможения в ЦНС. После издания в 1863 г. работы И. М. Сеченова «Рефлексы головного мозга» в физиологические основы введено понятие психической деятельности. Таким образом, был сформирован новый взгляд на единство физических и психических основ человека.
На развитие физиологии большое влияние оказали работы И. П. Павлова (1849-1936). Он создал учение о высшей нервной деятельности человека и животных. Исследуя регуляцию и саморегуляцию кровообращения, он установил наличие специальных нервов, из которых одни усиливают, другие задерживают, а третьи изменяют силу сердечных сокращений без изменения их частоты. Одновременно с этим И. П. Павлов изучал и физиологию пищеварения. Разработав и применив на практике ряд специальных хирургических методик, он создал новую физиологию пищеварения. Изучая динамику пищеварения, показал ее способность приспосабливаться к возбудительной секреции при употреблении различной пищи. Его книга «Лекции о работе главных пищеварительных желез» стала руководством для физиологов всего мира. За работу в области физиологии пищеварения в 1904 г. И. П. Павлову присудили Нобелевскую премию. Открытие им условного рефлекса позволило продолжить изучение психических процессов, которые лежат в основе поведения животных и человека. Результаты многолетних исследований И. П. Павлова явились основой для создания учения о высшей нервной деятельности, в соответствии с которым она осуществляется высшими отделами нервной системы и регулирует взаимоотношения организма с окружающей средой.
Значительный вклад в развитие анатомии и физиологии внесли и ученые Беларуси. Открытие в 1775 г. в Гродно медицинской академии, которую возглавил профессор анатомии Ж. Э. Жилибер (1741-1814), способствовало преподаванию анатомии и других медицинских дисциплин в Беларуси. При академии были созданы анатомический театр и музей, библиотека, в которой находилось много книг по медицине.
Значительный вклад в развитие физиологии внес уроженец Гродно Август Бекю (1769-1824) - первый профессор самостоятельной кафедры физиологии Виленского университета.
М. Гомолицкий (1791-1861), который родился в Слонимском уезде, с 1819 по 1827 г. возглавлял кафедру физиологии Виленского университета. Он широко проводил эксперименты на животных, занимался проблемами переливания крови. Его докторская диссертация была посвящена экспериментальному изучению физиологии.
С. Б. Юндзилл, уроженец Лидского уезда, профессор кафедры естественных наук Виленского университета, продолжал начатые Ж. Э. Жилибером исследования, издал учебник по физиологии. С. Б. Юндзилл считал, что жизнь организмов находится в постоянном движении и связи с внешней средой, «без которых невозможно существование самих организмов». Тем самым он приблизился к положению об эволюционном развитиии живой природы.
Я. О. Цибульский (1854-1919) впервые выделил в 1893- 1896 гг. активный экстракт надпочечников, что в дальнейшем позволило получить гормоны этой железы внутренней секреции в чистом виде.
Развитие анатомической науки в Беларуси тесно связано с открытием в 1921 г. медицинского факультета в Белорусском государственном университете. Основателем белорусской школы анатомов является профессор С. И. Лебед-кин, который возглавлял кафедру анатомии Минского медицинского института с 1922 по 1934 г. Главным направлением его исследований были изучение теоретических основ анатомии, определение взаимоотношений между формой и функцией, а также выяснение филогенетического развития органов человека. Свои исследования он обобщил в монографии «Биогенетический закон и теория рекапитуляции», изданной в Минске в 1936 г. Вопросам развития периферической нервной системы и реиннервации внутренних органов посвящены исследования известного ученого Д. М. Голуба, академика АН БССР, который возглавлял кафедру анатомии МГМИ с 1934 по 1975 г. За цикл фундаментальных работ по развитию вегетативной нервной системы и реиннервации внутренних органов Д. М. Голубу в 1973 г. присуждена Государственная премия СССР.
Последние два десятилетия плодотворно разрабатывает идеи С. И. Лебедкина и Д. М. Голуба профессор П. И. Лобко. Основной научной проблемой коллектива, который он возглавляет, является изучение теоретических аспектов и закономерностей развития вегетативных узлов, стволов и сплетений в эмбриогенезе человека и животных. Установлен ряд общих закономерностей формирования узлового компонента вегетативных нервных сплетений, экстра- и интраорганных нервных узлов и др. За учебное пособие «Вегетативная нервная система» (атлас) (1988) П. И. Лоб-ко, С. Д. Денисову и П. Г. Пивченко в 1994 г. присуждена Государственная премия Республики Беларусь.
Целенаправленные исследования по физиологии человека связаны с созданием в 1921 г. соответствующей кафедры в Белорусском государственном университете и в 1930 г. в МГМИ. Здесь изучались вопросы кровообращения, нервные механизмы регуляции функций сердечно-сосудистой системы (И. А. Ветохин), вопросы физиологии и патологии сердца (Г. М. Прусс и др.), компенсаторные механизмы в деятельности сердечно-сосудистой системы (А. Ю. Броновицкий, А. А. Кривчик), кибернетические методы регуляции кровообращения в норме и патологии (Г. И. Сидоренко), функции инсулярного аппарата (Г. Г. Гацко).
Систематические физиологические исследования развернулись в 1953 г. в Институте физиологии АНБССР, где было взято оригинальное направление на изучение вегетативной нервной системы.
Значительный вклад в развитие физиологии на Беларуси внес академик И. А. Булыгин. Свои исследования он посвятил изучению спинного и головного мозга, вегетативной нервной системы. За монографии «Исследования закономерностей и механизмов интерорецептивных рефлексов» (1959), «Афферентные пути интерорецептивных рефлексов» (1966), «Цепные и канальцевые нейрогуморальные механизмы висцеральных рефлекторных реакций» (1970) И. А. Булыгину в 1972 г. присуждена Государственная премия БССР, а за цикл работ, опубликованных в 1964-1976 гг. «Новые принципы организации вегетативных ганглиев», в 1978 г. Государственная премия СССР.
Научные исследования академика Н. И. Аринчина связаны с физиологией и патологией кровообращения, сравнительной и эволюционной геронтологией. Он разработал новые методы и аппараты для комплексного исследования сердечно-сосудистой системы.
Физиология XX в. характеризуется значительными достижениями в области раскрытия деятельности органов, систем, организма в целом. Особенностью современной физиологии является глубокий аналитический подход к исследованиям мембранных, клеточных процессов, описанию биофизических аспектов возбуждения и торможения. Знания о количественных взаимоотношениях между различными процессами дают возможность осуществить их математическое моделирование, выяснить те или иные нарушения в живом организме.

Методы исследований

Для изучения строения тела человека и его функций пользуются различными методами исследований. Для изучения морфологических особенностей человека выделяют две группы методов. Первая группа применяется для изучения строения организма человека на трупном материале, а вторая - на живом человеке.
В первую группу входят:
1) метод рассечения с помощью простых инструментов (скальпель, пинцет, пила и др.) - позволяет изучать. строение и топографию органов;
2) метод вымачивания трупов в воде или в специальной жидкости продолжительное время для выделения скелета, отдельных костей для изучения их строения;
3) метод распиливания замороженных трупов - разработан Н. И. Пироговым, позволяет изучать взаимоотношения органов в отдельно взятой части тела;
4) метод коррозии - применяется для изучения кровеносных сосудов и других трубчатых образований во внутренних органах путем заполнения их полостей затвердевающими веществами (жидкий металл, пластмассы), а затем разрушением тканей органов при помощи сильных кислот и щелочей, после чего остается слепок от налитых образований;
5) инъекционный метод - заключается в введении в органы, имеющие полости, красящих веществ с последующим осветлением паренхимы органов глицерином, метиловым спиртом и др. Широко применяется для исследования кровеносной и лимфатической систем, бронхов, легких и др.;
6) микроскопический метод - используют для изучения структуры органов при помощи приборов, дающих увеличенное изображение.

Ко второй группе относятся:
1) рентгенологический метод и его модификации (рентгеноскопия, рентгенография, ангиография, лимфография, рентгенокимография и др.) - позволяет изучать структуру органов, их топографию на живом человеке в разные периоды его жизни;
2) соматоскопический (визуальный осмотр) метод изучения тела человека и его частей - используют для определения формы грудной клетки, степени развития отдельных групп мышц, искривления позвоночника, конституции тела и др.;
3) антропометрический метод - изучает тело человека и его части путем измерения, определения пропорции тела, соотношение мышечной, костной и жировой тканей, степень подвижности суставов и др.;
4) эндоскопический метод - дает возможность исследовать на живом человеке с помощью световодной техники внутреннюю поверхность пищеварительной и дыхательной систем, полости сердца и сосудов, мочеполовой аппарат.
В современной анатомии используются новые методы исследования, такие как компьютерная томография, ультразвуковая эхолокация, стереофотограмметрия, ядерно-магнитный резонанс и др.
В свою очередь из анатомии выделились гистология - учение о тканях и цитология - наука о строении и функции клетки.
Для исследования физиологических процессов обычно использовали экспериментальные методы.
На ранних этапах развития физиологии применялся метод экстирпации (удаления) органа или его части с последующим наблюдением и регистрацией полученных показателей.
Фистульный метод основан на введении в полый орган (желудок, желчный пузырь, кишечник) металлической или пластмассовой трубки и закреплении ее на коже. При помощи этого метода определяют секреторную функцию органов.
Метод катетеризации применяется для изучения и регистрации процессов, которые происходят в протоках экзокринных желез, в кровеносных сосудах, сердце. При помощи тонких синтетических трубок - катетеров - вводят различные лекарственные средства.
Метод денервации основан на перерезании нервных волокон, иннервирующих орган, с целью установить зависимость функции органа от воздействия нервной системы. Для возбуждения деятельности органа используют электрический или химический вид раздражения.
В последние десятилетия широкое применение в физиологических исследованиях нашли инструментальные методы (электрокардиография, электроэнцефалография, регистрация активности нервной системы путем вживления макро- и микроэлементов и др.).
В зависимости от формы проведения физиологический эксперимент делится на острый, хронический и в условиях изолированного органа.
Острый эксперимент предназначен для проведения искусственной изоляции органов и тканей, стимуляции различных нервов, регистрации электрических потенциалов, введения лекарств и др.
Хронический эксперимент применяется в виде целенаправленных хирургических операций (наложение фистул, нервнососудистых анастомозов, пересадка разных органов, вживление электродов и др.).
Функцию органа можно изучать не только в целом организме, но и изолировано от него. В таком случае органу создают все необходимые условия для его жизнедеятельности, в том числе подачу питательных растворов в сосуды изолированного органа (метод перфузии).
Применение компьютерной техники в проведении физиологического эксперимента значительно изменило его технику, способы регистрации процессов и обработку полученных результатов.

Клетки и ткани

Человеческий организм – слагаемое элементов, которые слаженно действуют, чтобы эффективно выполнять все жизненные функции.


Клетки

Клетка - это структурно-функциональная единица живого организма, способная к делению и обмену с окружающей средой. Она осуществляет передачу генетической информации путем самовоспроизведения.
Клетки очень разнообразны по строению, функции, форме, размерам (рис. 1). Последние колеблются от 5 до 200 мкм. Самыми крупными в организме человека являются яйцеклетка и нервная клетка, а самыми маленькими - лимфоциты крови. По форме клетки бывают шаровидные, веретеновидные, плоские, кубические, призматические и др. Некоторые клетки вместе с отростками достигают длины до 1,5 м и более (например, нейроны).

Рис. 1. Формы клеток:
1 - нервная; 2 - эпителиальная; 3 - соединительнотканная; 4 - гладкая мышечная; 5- эритроцит; 6- сперматозоид; 7-яйцеклетка

Каждая клетка имеет сложное строение и представляет собой систему биополимеров, содержит ядро, цитоплазму и находящиеся в ней органеллы (рис. 2). От внешней среды клетка отграничивается клеточной оболочкой - плазмалеммой (толщина 9-10 мм), которая осуществляет транспорт необходимых веществ в клетку, и наоборот, взаимодействует с соседними клетками и межклеточным веществом. Внутри клетки находится ядро, в котором происходит синтез белка, оно хранит генетическую информацию в виде ДНК (дезоксирибонуклеиновая кислота). Ядро может иметь округлую или овоидную форму, но в плоских клетках оно несколько сплющенное, а в лейкоцитах палочковидное или бобовидное. В эритроцитах и тромбоцитах оно отсутствует. Сверху ядро покрыто ядерной оболочкой, которая представлена внешней и внутренней мембраной. В ядре находится нуклеоплазма, которая представляет собой гелеобразное вещество и содержит хроматин и ядрышко.

Рис. 2. Схема ультрамикроскопического строения клетки
(по М. Р. Сапину, Г. Л. Билич, 1989):
1 - цитолемма (плазматическая мембрана); 2 - пиноцитозные пузырьки; 3 - центросома (клеточный центр, цитоцентр); 4 - гиалоплазма; 5 - эндоплазматическая сеть (а - мембраны эндоплазматической сети, б - рибосомы); 6- ядро; 7- связь перинуклеарного пространства с полостями эндоплазматической сети; 8 - ядерные поры; 9 - ядрышко; 10 - внутриклеточный сетчатый аппарат (комплекс Гольджи); 11- секреторные вакуоли; 12- митохондрии; 13 - лизосомы; 14-три последовательные стадии фагоцитоза; 15 - связь клеточной оболочки (цитолеммы) с мембранами эндоплазматической сети

Ядро окружает цитоплазма, в состав которой входят ги-алоплазма, органеллы и включения.
Гиалоплазма - это основное вещество цитоплазмы, она участвует в обменных процессах клетки, содержит белки, полисахариды, нуклеиновую кислоту и др.
Постоянные части клетки, которые имеют определенную структуру и выполняют биохимические функции, называются органеллами. К ним относятся клеточный центр, митохондрии, комплекс Гольджи, эндоплазматическая (цитоплазматическая) сеть.
Клеточный центр обычно находится около ядра или комплекса Гольджи, состоит из двух плотных образований - центриолей, которые входят в состав веретена движущейся клетки и образуют реснички и жгутики.
Митохондрии имеют форму зерен, нитей, палочек, формируются из двух мембран - внутренней и внешней. Длина митохондрии колеблется от 1 до 15 мкм, диаметр - от 0,2 до 1,0 мкм. Внутренняя мембрана образует складки (кри-сты), в которых располагаются ферменты. В митохондриях происходят расщепление глюкозы, аминокислот, окислении жирных кислот, образование АТФ (аденозинтрифосфорнай кислота) - основного энергетического материала.
Комплекс Гольджи (внутриклеточный сетчатый аппарат) имеет вид пузырьков, пластинок, трубочек, расположенных вокруг ядра. Его функция состоит в транспорте веществ, химической их обработке и выведении за пределы клетки продуктов ее жизнедеятельности.
Эндоплазматическая (цитоплазматическая) сеть формируется из агранулярной (гладкой) и гранулярной (зернистой) сети. Агранулярная Эндоплазматическая сеть образуется преимущественно мелкими цистернами и трубочками диаметром 50-100 нм, которые участвуют в обмене липидов и полисахаридов. Гранулярная Эндоплазматическая сеть состоит из пластинок, трубочек, цистерн, к стенкам которых прилегают мелкие образования - рибосомы, синтезирующие белки.
Цитоплазма также имеет постоянные скопления отдельных веществ, которые называются включениями цитоплазмы и имеют белковую, жировую и пигментную природу.
Клетка как часть многоклеточного организма выполняет основные функции: усвоение поступающих веществ и расщепление их с образованием энергии, необходимой для поддержания жизнедеятельности организма. Клетки обладают также раздражимостью (двигательные реакции) и способны размножаться делением. Деление клеток бывает непрямое (митоз) и редукционное (мейоз).
Митоз - самая распространенная форма клеточного деления. Он состоит из нескольких этапов - профазы, метафазы, анафазы и телофазы. Простое (или прямое) деление клеток - амитоз - встречается редко, в тех случаях, когда клетка делится на равные или неравные части. Мейоз - форма ядерного деления, при котором количество хромосом в оплодотворенной клетке уменьшается вдвое и наблюдается перестройка генного аппарата клетки. Период от одного деления клетки к другому называется ее жизненным циклом.

Ткани

Клетка входит в состав ткани, из которой состоит организм человека и животных.
Ткань - это система клеток и внеклеточных структур, объединенных единством происхождения, строения и функций.
В результате взаимодействия организма с внешней средой, которое сложилось в процессе эволюции, появились четыре вида тканей с определенными функциональными особенностями: эпителиальная, соединительная, мышечная и нервная.
Каждый орган состоит из различных тканей, которые тесно связаны между собой. Например, желудок, кишечник, другие органы состоят из эпителиальной, соединительной, гладкомышечной и нервной тканей.
Соединительная ткань многих органов образует строму, а эпителиальная - паренхиму. Функция пищеварительной системы не может быть выполнена полностью, если нарушена ее мышечная деятельность.
Таким образом, различные ткани, входящие в состав того или иного органа, обеспечивают выполнение главной функции данного органа.


Эпителиальная ткань

Эпителиальная ткань (эпителий) покрывает всю наружную поверхность тела человека и животных, выстилает слизистые оболочки полых внутренних органов (желудок, кишечник, мочевыводящие пути, плевру, перикард, брюшину) и входит в состав желез внутренней секреции. Выделяют покровный (поверхностный) и секреторный (железистый) эпителий. Эпителиальная ткань участвует в обмене веществ между организмом и внешней средой, выполняет защитную функцию (эпителий кожи), функции секреции, всасывания (эпителий кишечника), выделения (эпителий почек), газообмена (эпителий легких), имеет большую регенеративную способность.
В зависимости от количества клеточных слоев и формы отдельных клеток различают эпителий многослойный - ороговевающий и неороговевающий, переходный и однослой-ный - простой столбчатый, простой кубический (плоский), простой сквамозный (мезотелий) (рис. 3).
В плоском эпителии клетки тонкие, уплотненные, содержат мало цитоплазмы, дисковидное ядро находится в центре, край его неровный. Плоский эпителий выстилает альвеолы легких, стенки капилляров, сосудов, полостей сердца, где благодаря своей тонкости осуществляет диффузию различных веществ, снижает трение текущих жидкостей.
Кубический эпителий выстилает протоки многих желез, а также образует канальцы почек, выполняет секреторную функцию.
Цилиндрический эпителий состоит из высоких и узких клеток. Он выстилает желудок, кишечник, желчный пузырь, почечные канальцы, а также входит в состав щитовидной железы.

Рис. 3. Различные виды эпителия:
А - однослойный плоский; Б - однослойный кубический; В - цилиндрический; Г-однослойный реснитчатый; Д-многорадный; Е -многослойный ороговевающий

Клетки реснитчатого эпителия обычно имеют форму цилиндра, с множеством на свободных поверхностях ресничек; выстилает яйцеводы, желудочки головного мозга, спинномозговой канал и дыхательные пути, где обеспечивает транспорт различных веществ.
Многорядный эпителий выстилает мочевыводящие пути, трахею, дыхательные пути и входит в состав слизистой оболочки обонятельных полостей.
Многослойный эпителий состоит из нескольких слоев клеток. Он выстилает наружную поверхность кожи, слизистую оболочку пищевода, внутреннюю поверхность щек, влагалище.
Переходный эпителий находится в тех органах, которые подвергаются сильному растяжению (мочевой пузырь, мочеточник, почечная лоханка). Толщина переходного эпителия препятствует попаданию мочи в окружающие ткани.
Железистый эпителий составляет основную массу тех желез, у которых эпителиальные клетки участвуют в образовании и выделении необходимых организму веществ.
Существуют два типа секреторных клеток - экзокринные и эндокринные. Экзокринные клетки выделяют секрет на свободную поверхность эпителия и через протоки в полость (желудка, кишечника, дыхательных путей и др.). Эндокринными называют железы, секрет (гормон) которых выделяется непосредственно в кровь или лимфу (гипофиз, щитовидная, вилочковая железы, надпочечники).
По строению экзокринные железы могут быть трубчатыми, альвеолярными, трубчато-альвеолярными.

Соединительная ткань

12345678910Следующая ⇒

Физиология (от греч. physis — природа, logos – учение) – наука, изучающая закономерности функционирования животных организмов, их отдельных систем, органов, тканей и клеток. Совокупность физиологических знаний подразделяют на ряд отдельных, но взаимосвязанных направлений – общую, частную и прикладную физиологию. В общую физиологию включают сведения, касающиеся природы основных жизненных процессов, общих проявлений жизнедеятельности, таких как метаболизм органов и тканей, общие закономерности реагирования организма и его структур на воздействие среды – раздражимость. Сюда же относят особенности, обусловленные уровнем структурной организации, разными условиями существования. Следовательно, общая физиология описывает те качественно своеобразные явления, которые отличают живое от неживого. Частная физиология исследует свойства отдельных тканей, органов, закономерности объединения их в системы, а также физиологию отдельных классов, групп и видов животных. Прикладная физиология изучает закономерности проявлений деятельности организма, особенно человека, в связи со специальными задачами и условиями. К числу таких разделов относят физиологию труда, спорта, питания, экологическая физиология. Физиологию принято также условно подразделять на нормальную и патологическую. Возникновение физиологии произошло в древности в связи с потребностями медицины, лучшие представители которой отчетливо понимали, что помочь больному можно лишь зная об устройстве тела. Отец медицины Гиппократ заложил основы для понимания роли отдельных систем и функций организма как целого. Подобных воззрений придерживался и другой знаменитый врач древности - римский анатом Гален, который впервые в истории ввел в практику медицины эксперимент. Его эксперименты послужили основой для теорий, которые без каких-либо существенных изменений просуществовали почти 14 веков. Зарождение физиологии как науки, которая изучает происходящие в организме процессы и объединяет их на основе наблюдений и экспериментов, относится в основном ко второй половине 16 – началу 18в. В это же время анатом Андреас Везалий первым правильно описал особенности строения человеческого тела, а также создал первое руководство на живот­ных. Важнейшим этапом в становлении физиологии при­нято считать 1628 год, когда английский врач и физио­лог Уильям Гарвей опубликовал свою бессмертную кни­гу «Анатомические исследования о движении сердца и крови у животных», в которой изложил основы своего великого открытия - существования кровообращения. От­крытие кровообращения стало возможным благодаря тому, что Гарвей ввел в практику научных исследова­ний новый прием - вивисекцию, или живосечение. Этот прием предусматривает обнажение покровов и тканей тех или иных органов животных посредством определенных разрезов, что создает возможность прямо­го наблюдения за работой этих органов. Помимо того, опыты проводили с применением различных воздействий на изучаемый процесс. Правильность представлений о наличии замкнутой системы кровообращения подтвердил итальянский био­лог Марчелло Мальпиги (1628-1694). Ему принадлежит открытие форменных элементов крови, альвеолярного строения легких, а также связи артерий с венами через капилляры. К числу наиболее важных достижений XVII-XVIII вв. относится сформулированное французским философом, математиком, физиком и физиологом Рене Декартом представление об «отраженной деятельности организ­ма». Декарт, используя такие факты, как закономерно возникающее при прикосновении к роговице мигание, выдвинул понятие о рефлексе. К первой половине XVIII в. относится начало развития физиологии в Рос­сии. И. М. Сеченов вошел в историю науки как «отец рус­ской физиологии», мыслитель, впервые дерзнувший под­вергнуть экспериментальному анализу самую сложную об­ласть природы - явление сознания. Научная деятельность И. М. Сеченова состояла из не­скольких этапов. Он был первым, кому удалось извлечь и проанализировать растворенные в крови газы, устано­вить относительную эффективность влияния различных ионов на физико-химические процессы в живом организ­ме, обнаружить явление суммации в центральной нерв­ной системе. Он также стал основоположником нового направления физиологии - физиологии труда. Наибольшую славу русской науке принесло открытие И. М. Сеченовым (1862) торможения в центральной нерв­ной системе. На развитие отечественной и мировой физиологии ог­ромное влияние оказали работы И. П. Павлова - выдаю­щегося представителя естествознания, создателя учения о высшей нервной деятельности животных и человека. Павлов ус­тановил существование специальных нервов, одни из ко­торых усиливают, другие - задерживают работу сердца, третьи - способны изменять силу сердечных сокращений без изменения их частоты. И. П. Павлов объяснил это яв­ление свойством данных нервов менять функциональное состояние сердечной мускулатуры, уменьшая ее трофику. Тем самым был заложен фундамент теории о трофической иннервации тканей. Одновременно с изучением сердечно-сосудистой систе­мы И. П. Павлов исследовал физиологию пищеварения. Разработав и применив целый ряд тонких хирургических методов, он, по существу, создал заново физиологию пи­щеварения. Изучая динамику секреторного процесса же­лудочных, поджелудочной и слюнных желез, работу пе­чени при употреблении разной пищи, И. П. Павлов показал их способность приспосабливаться к характеру возбуди­тельной секреции. В основе этих работ лежала идея не­рвизма, под которой И. П. Павлов понимал «физиологи­ческое направление, стремящееся распространить влияние нервной системы на возможно большее количество дея­тельности организма. В начале XX века В. М. Бехтеревым была установлена роль подкорковых структур в формировании эмоциональных и двигательных реакций животных и человека; открыты ядра и проводящие пути мозга; выявлены функциональ­но-анатомическая основа равновесия и ориентировки в пространстве; функции таламуса; определены в коре головного мозга центры движения и секреции внутренних органов; доказано, что двигательные поля коры больших полуша­рий являются основой индивидуально приобретенных движений. Фрейдом сформулирована идея о превалирующем значе­нии инстинктов, доминирующем значении бессозна­тельных психических процессов. А. А. Ухтомский сформулировал ведущий принцип работы головного моз­га - доминанту, выявил ее характерные черты - повы­шение возбудимости в доминантном центре, стойкость этого возбуждения во времени, возможность его суммации, инертность возбуждения и торможение других реф­лекторных механизмов, не участвующих в доминантной реакции. В настоящее время доминанта признана одним из основных механизмов деятельности мозга. В текущем столетии большой вклад внесен в изучение функциональных взаимоотношений коры головного моз­га и внутренних органов. К. М. Быков, изучая регулиру­ющее влияние коры больших полушарий на работу внут­ренних органов, показал возможность изменения их деятельности условнорефлекторным путем. Благодаря ис­следованию В. Н. Черниговским проблем чувствительно­сти внутренних органов, взаимоотношений с корой голов­ного мозга, а также определению проекций афферентных систем внутренних органов в коре полушарий, таламусе, мозжечке, ретикулярной формации, подробному изуче­нию безусловнорефлекторной деятельности этих органов при раздражении интероцепторов механическим, хими­ческим и другими агентами была открыта новая глава физиологии - интероцепция.

12345678910Следующая ⇒

Похожая информация:

Поиск на сайте:

Предмет, задачи возрастной физиологии и ее связь с другими науками

Возрастная физиология – это наука, изучающая особенности процесса жизнедеятельности организма на разных этапах онтогенеза.

Она является самостоятельной ветвью физиологии человека и животных, в предмет которой входит изучение закономерностей становления и развития физиологических функций организма на протяжении его жизненного пути от оплодотворения до конца жизни.

В зависимости от того какой возрастной период изучает возрастная физиология выделяют: возрастную нейрофизиологию, возрастную эндокринологию, возрастную физиологию мышечной деятельности и двигательной функции; возрастную физиологию обменных процессов, сердечно-сосудистой и дыхательной систем, систем пищеварения и выделения, физиологию эмбрионального развития, физиологию детей грудного возраста, физиологию детей и подростков, физиологию зрелого возраста, геронтологию (науку о старении).

Основными задачами изучения возрастной физиологии являются следующие:

Изучение особенностей функционирования различных органов, систем и организма в целом;

Выявление экзогенных и эндогенных факторов, определяющих особенности функционирования организма в различные возрастные периоды;

Определение объективных критериев возраста (возрастные нормативы);

Установление закономерностей индивидуального развития.

Возрастная физиология тесно связана со многими разделами физиологической науки и, широко использует данные из многих других биологических наук. Так, для понимания закономерностей формирования функций в процессе индивидуального развития человека необходимы данные таких физиологических наук, как физиология клетки, сравнительная и эволюционная физиология, физиология отдельных органов и систем: сердца, печени, почек, крови, дыхания, нервной системы и т. д.

В то же время открываемые возрастной физиологией закономерности и законы базируются на данных различных биологических наук: эмбриологии, генетики, анатомии, цитологии, гистологии, биофизики, биохимии и др. Наконец, данные возрастной физиологии, в свою очередь, могут быть использованы для развития различных научных дисциплин. Например, важное значение имеет возрастная физиология для развития педиатрии, детской травматологии и хирургии, антропологии и геронтологии, гигиены, возрастной психологии и педагогики.

История и основные этапы развития возрастной физиологии

Научное изучение возрастных особенностей детского организма началось сравнительно недавно – во второй половине XIX в. Вскоре после открытия закона сохранения энергии физиологи обнаружили, что ребенок потребляет в течение суток ненамного меньше энергии, чем взрослый, хотя размеры тела ребенка намного меньше. Этот факт требовал рационального объяснения. В поисках этого объяснения немецкий физиолог Макс Рубнер провел изучение скорости энергетического обмена у собак разного размера и обнаружил, что более крупные животные в расчете на 1 кг массы тела расходуют энергии значительно меньше, чем мелкие. Подсчитав площадь поверхности тела, Рубнер убедился, что отношение количества потребляемой энергии пропорционально именно величине поверхности тела – и это неудивительно: ведь вся потребляемая организмом энергия должна быть выделена в окружающую среду в виде тепла, т.е. поток энергии зависит от поверхности теплоотдачи. Именно различиями в соотношении массы и поверхности тела Рубнер объяснил разницу в интенсивности энергетического обмена между крупными и мелкими животными, а заодно – между взрослыми и детьми. «Правило поверхности» Рубнера стало одним из первых фундаментальных обобщений в физиологии развития и в экологической физиологии.

Этим правилом объясняли не только различия в величине теплопродукции, но также в частоте сердечных сокращений и дыхательных циклов, легочной вентиляции и объеме кровотока, а также в других показателях деятельности вегетативных функций. Во всех этих случаях интенсивность физиологических процессов в детском организме существенно выше, чем в организме взрослого.

Такой сугубо количественный подход характерен для немецкой физиологической школы XIX в., освященной именами выдающихся физиологов Э.Ф. Пфлюгера, Г.Л.Гельмгольца и других. Их трудами физиология была поднята до уровня естественных наук, стоящих в одном ряду с физикой и химией. Однако русская физиологическая школа, хотя и уходила корнями в немецкую, всегда отличалась повышенным интересом к качественным особенностям и закономерностям.

Выдающийся представитель русской педиатрической школы доктор Николай Петрович Гундобин еще в самом начале XX в.

утверждал, что ребенок – не просто маленький, он еще и во многом не такой, как взрослый. Его организм устроен и работает иначе, причем на каждом этапе своего развития детский организм прекрасно приспособлен к тем конкретным условиям, с которыми ему приходится сталкиваться в реальной жизни.

Эти идеи разделял и развивал замечательный русский физиолог, педагог и гигиенист Петр Францевич Лесгафт, заложивший основы школьной гигиены и физического воспитания детей и подростков. Он считал необходимым глубокое изучение детского организма, его физиологических возможностей.

Наиболее отчетливо центральную проблему физиологии развития сформулировал в 20-е годы XX в. немецкий врач и физиолог Э.Гельмрейх. Он утверждал, что различия между взрослым и ребенком находятся в двух плоскостях, которые необходимо рассматривать по возможности независимо, как два самостоятельных аспекта: ребенок как маленький организм и ребенок как развивающийся организм. В этом смысле «правило поверхности» Рубнера рассматривает ребенка только в одном аспекте – именно как маленький организм. Значительно более интересными представляются те особенности ребенка, которые характеризуют его как организм развивающийся.

К одной из таких принципиальных особенностей относится открытое в конце 30-х годов Ильей Аркадьевичем Аршавским неравномерное развитие симпатических и парасимпатических влияний нервной системы на все важнейшие функции детского организма. И.А.Аршавский доказал, что симпатотонические механизмы созревают значительно раньше, и это создает важное качественное своеобразие функционального состояния детского организма. Симпатический отдел вегетативной нервной системы стимулирует активность сердечно-сосудистой и дыхательной систем, а также обменные процессы в организме.

Такая стимуляция вполне адекватна для раннего возраста, когда организм нуждается в повышенной интенсивности обменных процессов, необходимой для обеспечения процессов роста и развития. По мере созревания организма ребенка усиливаются парасимпатические, тормозящие влияния.

Глава 1. История физиологии. Методы физиологических исследований

В результате снижается частота пульса, частота дыхания, относительная интенсивность энергопродукции.

Проблема неравномерности гетерохронности (разновременности) развития органов и систем стала центральным объектом исследования выдающегося физиолога академика Петра Кузьмича Анохина и его научной школы.

Им была в 40-е годы сформулирована концепция системогенеза, согласно которой последовательность разворачивающихся в организме событий выстраивается таким образом, чтобы удовлетворять меняющимся по ходу развития потребностям организма. При этом П.К.Анохин впервые перешел от рассмотрения анатомически целостных систем к изучению и анализу функциональных связей в организме.

Другой выдающийся физиолог Николай Александрович Бернштейн показал, как постепенно в онтогенезе формируются и усложняются алгоритмы управления произвольными движениями, как механизмы высшего управления движениями распространяются с возрастом от наиболее эволюционно древних подкорковых структур головного мозга к более новым, достигая все более высокого уровня «построения движений». В работах Н.А.Бернштейна впервые было показано, что направление онтогенетического прогресса управления физиологическими функциями отчетливо совпадает с направлением филогенетического прогресса. Таким образом, на физиологическом материале была подтверждена концепция Э. Геккеля и А.Н. Северцова о том, что индивидуальное развитие (онтогенез) представляет собой ускоренное эволюционное развитие (филогенез).

Крупнейший специалист в области теории эволюции академик Иван Иванович Шмальгаузен также многие годы занимался вопросами онтогенеза. Материал, на котором И.И.Шмальгаузен делал свои выводы, редко имел прямое отношение к физиологии развития, но выводы из его трудов о чередовании этапов роста и дифференцировок, а также методологические работы в области изучения динамики ростовых процессов, выполненные в 30-е годы, и до сих пор имеют огромное значение для понимания важнейших закономерностей возрастного развития.

В 60-е годы физиолог Акоп Арташесович Маркосян выдвинул концепцию биологической надежности как одного из факторов онтогенеза. Она опиралась на многочисленные факты, которые свидетельствовали, что надежность функциональных систем по мере взросления организма существенно увеличивается. Это подтверждалось данными по развитию системы свертывания крови, иммунитета, функциональной организации деятельности мозга.

В последние десятилетия накопилось много новых фактов, подтверждающих основные положения концепции биологической надежности А.А.Маркосяна.

На современном этапе развития медико-биологической науки также продолжаются исследования в области возрастной физиологии уже с использованием современных методов исследования.

Таким образом, физиологическая наука располагает в настоящее время значительной многосторонней информацией, касающейся функциональной деятельности любой физиологической системы детского организма и его деятельности как целого.

ПОСМОТРЕТЬ ЕЩЕ:

Основная статья: История физиологии

В России физиология начала развиваться в XVIII в. Уже с самого начала русская физиология обнаружила наибольший ин-терес к изучению физиологии нервной системы.

Основоположником физиологии нервной системы можно считать Ефрема Осиповича Мухина (1766 — 1850), профессора анатомии и физиологии Медико-хирур-гической академии Московского университета.

В XIX в. в России выдвинулась блестящая группа физиологов, среди которых особо выделился И. М. Сеченов. Почти одновременно с Сеченовым или немного позже работали В. Я. Данилевский в Харькове и И. А. Миславский в Казани.

Сформулированная отечественной физиологией, начиная от Мухина, затем Сеченовым, Павловым и др., рефлекторная теория вклю-чает в себя и деятельность коры больших полушарий. Это не ос-тавляет места для предположений, что какие-либо функции коры могут происходить спонтанно, без стимулов извне или изнутри.

Мухин Е. О.

В 1800 г. Е. О. Мухин защитил диссертацию о стимулах, воз-буждающих тело человека, и получил степень доктора медицины и хирургии. Главным направлением всей его научной деятельности было изучение функции нервной системы, выяснение значения раз-дражений, которые вызывают действия и обусловливают все явления жизни. Он считал, что раздражениями служат внешние и внутренние факторы, что все отправления тела детерминированы. При этом он указывал, что имеет значение и состояние организма, его реактивность. Раздражения, по его мнению, могут приводить и к действиям, и к прекращению действий (т. е. к торможению), в организме может происходить борьба между раздражениями, при-чем более сильное раздражение преодолевает более слабое; первей-шим местом ощущений он считал головной мозг; возбуждение, указывал он, быстро распространяется по нервам всего тела, на-подобие электрического тока; переход возбуждения с одной поло-вины тела на другую происходит в продолговатом мозге, в Варо-лиевом мосту, в спайке полушарий. Мухин настаивал, что работа нервной системы делает организм целостным и что благодаря своей способности реагировать на изменения внешней среды он сливается с ней воедино.

Высокие достоинства этого выдающегося и незаслуженно полузабытого русского физиолога видны из того, что мы и в настоящее время, через полтора века, почти ничего не можем изменить в указанном перечне его утверждений, настолько глубоко он проник в функции нервной системы еще тогда, когда не было даже хорошей методики ее исследования.

Сеченов И. М.

Наибольшее значение имеют труды Ивана Михайловича Сеченова, которого справедливо считают основоположником русской физиологии. Он был разносторонним ученым. Им были проведены исследова-ния по физиологии крови и разработана методика получения газов из крови. И. М. Сеченов много работал по физиологии дыхания и обмена веществ.

КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ФИЗИОЛОГИИ

Однако самые важные его работы касаются физиологии нервной системы, где он сделал классические открытия по вопросу о торможении в нервной системе и о функциях коры головного мозга. Работая много и плодотворно над механизмом рефлексов, их путях и суммации возбуждения и мозге, он пришел к выводу о преобладающей роли коры полушарий в нервной системе высших животных. Кора головного мозга получает раздражения от всех частей тела и посылает к ним возбуждения. Сеченов развил важнейший тезис в физиологии коры полушарий, заключающийся в признании того, что в основе деятельности коры лежат рефлектор-ные механизмы.

Данилевский В. Я.

Данилевский интересовался электрофизиологией, открыл электротоки в коре головного мозга, изучал мышечную систему и обмен веществ в ней.

Миславский И. А.

Миславский много занимался корой головного мозга, наблюдая эффекты от непосредственного ее раздражения в разных точках. Но важнейшей его заслугой было открытие места расположения дыхательного центра с точной его локализацией в продолговатом мозге. Школа Миславского изучала также иннервацию желез, особенно желез внутренней секреции.

Введенский И. Е.

В конце. XIX в. в русской физиологии видное место занимал И. Е. Введенский (Петербург), работавший по общим вопросам воз-буждении. Изучая на нервно-мышечном препарате явления уми-рания нерва, он открыл закономерности смены процесса возбуж-дения процессом торможения, известные под названием парабиоза. Замечательно, что установленные им закономерности приложимы ко всем проявлениям возбуждения в нервной системе и в других возбудимых образованиях. Материал с сайта http://wiki-med.com

Павлов И. П.

С конца XIX в. развитие физиологии в России связывается, и первую очередь, с деятельностью выдающегося исследователя и разностороннего экспериментатора Ивана Петровича Павлова (Санкт-Петербург). Его выдающиеся работы сосредото-чивались в двух больших областях физиологии. Это изучение процесса пищеварения, где Павлов дал замечательную методику наложения фистул на разные отделы пищеварительного канала, позволившую ему непосредственно наблюдать процессы в глубоко лежащих органах. Он с таким совершенством разработал эту об-ласть физиологии, что получил за эти работы Нобелевскую премию.

Изучая процессы пищеварения, И. П. Павлов обратил особое Внимание на роль в этих процессах нервной системы вообще и коры больших полушарий в особенности. В связи с этим Павловым было разработано учение об условных рефлексах, ставшее затем основным направлением его научной деятельности. Пользуясь условными рефлексами, Павлов получил возможность проникать в интимнейшие физиологические процессы в коре головного мозга. Разработка этих вопросов продолжается и сейчас с большим успе-хом.

Материал с сайта http://Wiki-Med.com

На этой странице материал по темам:

  • «знаменитые учёные физиологии

  • wiki-med.com

  • развитие физиологии в 21 веке

  • основные открытия в физиологии

  • история развития физиологии в россии реферат кратко

Становление физиологии как науки

⇐ ПредыдущаяСтр 17 из 33Следующая ⇒

Рождение физиологии как науки связано с именем выдающегося английского врача, физиолога и эмбриолога Уильяма Гарвея. (Harvey, Wiliiam, 1578-1657) (рис. 90), которому принадлежит заслуга создания стройной теории кровообращения.

В возрасте 21 года У. Гарвей окончил Кембриджский университет. В 24 года в Падуе стал доктором медицины. Вернувшись на родину, Гарвей стал профессором кафедры анатомии, физиологии и хирургии в Лондоне.

Основываясь на достижениях своих предшественников – Галена, Везалия, Коломбо, Фабриция – Гарвей математически рассчитал и экспериментально обосновал теорию кровообращения, согласно которой кровь возвращается к сердцу по малому, и большому кругам. В связи с тем, что при жизни Гарвея в физиологии еще не применяли микроскопа, он не мог увидеть капилляров, – их открыл Марчелло Мальпиги (Malpighi, Marcello, 1628-1694) через четыре года после смерти Гарвея. По мнению Гарвея, кровь переходила из артерий в вены по анастомозам и через поры тканей.

После многолетней проверки в эксперименте У. Гарвей изложил свою теорию в фундаментальном сочинении «Анатомическое исследование о движении сердца и крови у животных» («Exercitatio anatomica de motu cordis et sangvinis in animalibus», 1628) и сразу же подвергся ожесточенным нападкам со стороны церкви и многих ученых. Первым теорию Гарвея признал Р. Декарт, затем Г. Галилей, С. Санторио, А. Борелли. И. П. Павлов определил ее как не только «редкой ценности плод его ума, но и подвиг его смелости и самоотвержения».

Большое влияние на развитие естествознания (и физиологии в частности) оказала деятельность выдающегося английского философа Френсиса Бэкона (Bacon, Francis, 1561-1626). Не будучи врачом, Бэкон во многом определил пути дальнейшего развития медицины. В своем труде «О достоинстве и усовершенствовании наук» он сформулировал три основные задачи медицины: «первая состоит в сохранении здоровья, вторая – в излечении болезней, третья – в продолжении жизни». Занимаясь экспериментальными работами в области физиологии, Бэкон поставил перед медициной несколько конкретных вопросов: об изучении анатомии не только здорового, но и больного организма, о введении обезболивания, об использовании при лечении болезней природных факторов и развитии бальнеологии. Решение этих и многих других задач, выдвинутых Ф. Бэконом, потребовало столетий.

Современник Френсиса Бэкона выдающийся французский ученый Рене Декарт (Descartes, Rene, 1596-1650) в простейшем виде разработал схему рефлекторной дуги. Все нервы он разделил на центростремительные, по которым сигналы поступают в мозг, и центробежные, по которым из мозга сигналы движутся к органам. Декарт считал, что жизненные действия имеют рефлекторную природу и подчиняются механическим законам.

Р. Декарт явился типичным представителем ятрофизики – направления в естествознании и медицине, которое рассматривало живую природу с позиций физики. По сравнению со средневековой схоластикой метафизическое мышление XVII в. было явлением прогрессивным, и механистические взгляды Декарта оказали положительное влияние на дальнейшее развитие философии и естествознания в эпоху нового времени. Однако наряду с материалистическим пониманием мира Декарт в ряде вопросов толковал явления идеалистически. Так, он считал, что мышление является способностью души, а не тела.

Другим направлением в естествознании была ятромеханика. Ее основные положения четко изложены в сочинении «О движении животных» (рис.

История развития физиологии.

91) итальянского анатома и физиолога Джованни Альфонсо Борелли (Borelli, Giovanni Alfonso, 1608-1679)-одного из основоположников биомеханики. С позиций ятромеханики живой организм подобен машине, в которой все процессы можно объяснить при помощи математики и механики.

Среди выдающихся достижений эпохи Возрождения, имевших отношение как к физике, так и к медицине – изобретение в конце XVI в. термометра (точнее, воздушного термоскопа). Его автор – один из титанов эпохи Возрождения итальянский ученый Галилео Галилей (Galilei, Galileo, 1564-1642), подтвердивший и развивший гелиоцентрическую теорию Н. Коперника (1543). Множество его драгоценных рукописей было сожжено инквизицией. Но в тех, что сохранились, обнаружены: рисунки первого термоскопа. В отличие от современного термометра в нем расширялся воздух, а не ртуть. Почти одновременно с Галилеем профессор Падуанского университета Санторио (Santorius, 1561-1636), врач, анатом и физиолог, создал свой прибор, с помощью которого он измерял теплоту человеческого тела (рис. 92). Прибор был достаточно громоздким. Санторио установил его во дворе своего дома для всеобщего обозрения. Теплота различных частей тела определялась в течение десяти пульсовых ударов по изменению уровня жидкости в трубке, шкала которой была произвольной.

В начале XVII в. в Европе было сделано множество оригинальных термометров. Первый термометр, показания которого не зависели от перепадов атмосферного давления, был создан в 1641 г. при дворе Фердинанда II, императора Священной Римской империи, который не только слыл покровителем искусств, но и был автором ряда физических приборов. При его участии были созданы забавные по своей форме термометры, похожие на маленьких лягушат. Они предназначались для измерения теплоты тела человека и легко прикреплялись к коже пластырем. Полость «лягушат» заполнялась жидкостью, в которой плавали цветные шарики различной плотности. Когда жидкость согревалась, объем ее увеличивался, а плотность уменьшалась, и некоторые шарики погружались на дно прибора. Теплота тела пациента определялась согласно количеству разноцветных шариков, оставшихся на поверхности: чем их меньше, тем выше теплота тела испытуемого.

Разработка единой шкалы градусов растянулась на столетие. Последнее слово в этом вопросе принадлежит шведскому астроному и физику Андерсу Цельсию (Celsius, Anders, 1701-1744), который в 1742 г. предложил стоградусную шкалу: за 0° он принял температуру кипения воды, а точка таяния льда соответствовала 100°. Впоследствии эту шкалу перевернули, сделав 0° точкой таяния льда и началом отсчета. В таком виде шкала Цельсия дошла до наших дней, завоевав самую широкую популярность.

В медицинской практике термометрия начала применяться значительно позже – только во второй половине XIX в. Активное внедрение этого метода в России в 1860 г. связано с именем выдающегося русского клинициста С. П. Боткина (см. с. 270).

Ятрохимия и медицина

Наряду с ятрофизикой и ятромеханикой в эпоху Возрождения широкое развитие получила ятрохимия – направление в медицине, связанное с успехами химии. Ятрохимики считали, что процессы, совершающиеся в организме, являются химическими, поэтому с химией должно быть связано как изучение этих процессов, так и лечение болезней.

Одним из основоположников ятрохимии является выдающийся врач и химик раннего Возрождения Филипп Ауреол Теофраст Бомбаст фон Гоген-гейм, известный в истории под псевдонимом Парацельс (Hohenheim, Philippus Aureolus Theophrastus Bombastus von – Paracelsus, 1493-1541). Швейцарец по происхождению, он получил образование в университете в Ферраре (Италия) и впоследствии читал лекции в Базельском университете на своем родном немецком языке вместо принятого в научном мире латинского.

Парацельс явился одним из основоположников опытного метода в науке. «Теория врача есть опыт. Никто не может стать врачом без науки и опыта», – утверждал он.

Во времена Парацельса хирургия в Европе не считалась областью медицины и в университетах не преподавалась (ею занимались ремесленники), и Парацельс настаивал на объединении хирургии и медицины (т. е. терапии) в одну науку, потому что обе они исходят из одного корня. Сам он с гордостью называл себя «доктором обеих медицин». Его книги «Малая хирургия» («Chirurgia minor», 1528), «Большая хирургия» («Chirurgia magna», 1536) и другие пользовались большой популярностью (рис. 93).

С Парацельса начинается кардинальная перестройка химии в ее приложении к медицине: от поисков путей получения золота – к приготовлению лекарств. Согласно Парацельсу, здоровье связано с нормальным содержанием в организме человека трех начал: серы, ртути и соли; нарушение их правильных соотношений приводит к болезни. Вот почему врачи и аптекари эпохи Возрождения придавали большое значение лекарственным препаратам, содержащим серу, ртуть и различные соли, и часто сами выплавляли их из природных руд. Парацельс с гордостью писал, что он и его ученики «отдых в лаборатории имеют, пальцы в угли и отбросы и всякую грязь суют, а не в кольца золотые, и подобны кузнецам и угольщикам закопченным».

В своих сочинениях он писал также о болезнях рудокопов и литейщиков, связанных с отравлениями серой, свинцом, ртутью, сурьмой и, таким образом, закладывал основы будущей науки о профессиональных болезнях. О болезнях рудокопов и их предупреждении писал также современник Парацельса Георг Бауэр, известный под псевдонимом Агракола (Agricola, Georg, 1493-1541), в сочинении «О горном деле и металлургии» («De re metallica.», 1556).

Развитие медицинской химии в эпоху Возрождения привело к расширению аптекарского дела. Аптека как самостоятельное учреждение возникла во второй половине VIII в. на Ближнем Востоке. (Первая аптека на Ближнем и Среднем Востоке была открыта в 754 г. в столице Халифата – г. Багдаде.) В Европе первые аптеки появились в XI в. в испанских городах Толедо и Кордова. К XV в. они широко распространились по всему континенту.

В эпоху Возрождения размеры аптекарских лавок значительно, увеличились: из простых лавок периода развитого средневековья, когда вся аптека размещалась в одной комнате, они превратились в большие фармацевтические лаборатории, которые включали в себя помещение для приема посетителей, кладовые, где размельчались и хранились лекарства и сырье, и собственно лаборатории с печью и дистилляционным аппаратом (рис. 94).

Начиная с XV в. с особым старанием культивировались аптекарские ботанические сады; их называли также садами здоровья – Hortus sanitatis. От этого латинского названия произошло русское – вертоград (т. е. сад, цветник). В XVI-XVII вв. вертограды широко распространились на Руси. В качестве лекарственного сырья использовались также минеральные вещества и части животных. Большое значение имели заморские путешествия, из которых привозились иноземные лекарственные средства.

Представления о лечебном действии многих медикаментов в то время часто были далеки от истины. Так, в течение почти двух тысячелетий (с I по XX век) существовало мнение о том, что териак является универсальным средством против всех болезней. Его составляли сами врачи при большом скоплении народа более чем из 70 компонентов, а затем выдерживали в течение полугода: причем особой славой пользовался териак, приготовленный в г. Венеции.

Аптекари эпохи Возрождения, как и другие профессионалы, внесли большой вклад в формирование культуры своего времени. Они занимали высокое положение в обществе, однако их деятельность регламентировалась государством. В середине XVI в. начали появляться первые фармакопеи, в которых перечислялись используемые в данном городе или государстве лекарства, их состав, применение и стоимость. Так было положено начало официальному регулированию цен на медикаменты в Европе.

⇐ Предыдущая12131415161718192021Следующая ⇒

Читайте также:

Билет 4. Роль отечественных ученых в развитии физиологии.

Предыдущая12345678910111213141516Следующая

Первым русским физиологом и доктором медицинских наук был один из выдающихся сподвижников Петра I П.

Становление физиологии как науки. История развития физиологии.

В. Посников (родился в 1676 г.). П. В. Посников ставил перед собой задачу — экспериментально изучить причину наступления смерти.

Многое сделал для развития физиологии знаменитый русский ученый М. В. Ломоносов (1711-1765). Он не только впервые сформулировал закон сохранения материи и превращения энергии, но и разработал научные основы процесса окисления. Позднее его выводы были подтверждены французским химиком Лавуазье, открывшим кислород. Представления М. В. Ломоносова в дальнейшем были положены в основу учения о дыхании. М. В. Ломоносов впервые сформулировал трехкомпонентную теорию цветового зрения, дал классификацию вкусовых ощущений, высказал мысль, чтоорганизм является источником образования тепла.

Основоположником экспериментальной физиологии является профессор Московского университета А. М. Филомафитский (1802-1849), изучавший вопросы, связанные с физиологией дыхания, переливанием крови, применением наркоза. А. М. Филомафитский написал первый русский учебник по физиологии:

Начало оперативно-хирургическому методу изучения процессов пищеварения положено хирургом В. А. Басовым. Большой вклад в развитие отечественной физиологии внесли также А. Т. Бабухин, установивший двустороннее проведение возбуждения по нервному волокну, В. Ф. Овсянников, описавший сосудодвигательный центр в продолговатом мозге, Н. А. Миславский изучивший особенности расположения дыхательного центра, В. Я. Данилевский, обнаруживший наличие электрических колебаний в центральной нервной системе, В. Ю. Чаговец, сформулировавший основные принципы ионной теории возбуждения.

Огромное влияние на формирование материалистических традиций в отечественной физиологии оказали работы революционных демократов 60-х годов XIX столетия Н. Г. Чернышевского, А. И. Герцена, В. Г. Белинского, Н. А. Добролюбова, Д. И. Писарева. В своих произведениях они развивали демократические идеи, горячо пропагандировали достижения естественных наук и материалистическое мировоззрение. Среди физиологов-материалистов, воспринявших идеи русских просветителей-демократов, на первое место надо поставить И. М. Сеченова и И. П. Павлова.Мировое признание получило открытие И. М. Сеченовым явления центрального торможения (1862), что послужило основой для дальнейшего изучения взаимоотношений процессов возбуждения и торможения в нервной системе.

Изучение физиологии центральной нервной системы привело И. М. Сеченова к открытию явления суммации нервных импульсов. Он обнаружил периодичность электрических колебаний в продолговатом мозге.

Непосредственным продолжателем исследований И. М. Сеченова явился его ученик Н. Е. Введенский (1852-1922), профессор Петербургского университета. Н. Е. Введенский разработал новый метод телефонической регистрации электрических явлений в живых тканях. Используя этот метод, он показал, что процесс возбуждения зависит не только от раздражителя, но и от состояния возбудимой ткани. Н. Е. Введенский экспериментально доказал малую утомляемость нервных волокон. Им были установлены единство процессов возбуждения и торможения, их неразрывная связь. Н. Е. Введенский разработал учение о парабиозе — универсальной реакции живой ткани на повреждающие воздействия.

Идеи Н. Е. Введенского продолжал развивать его ученик и преемник работы по кафедре физиологии Ленинградского университета А. А. Ухтомский (1875-1942). Он создал учение о доминанте — господствующем очаге возбуждения в центральной нервной системе при определенных условиях.

Выдающуюся роль в развитии отечественной и мировой физиологической науки сыграл И. П. Павлов (1849-1936).Научная деятельность И. П. Павлова развивалась в трех направлениях: первое (1874-1889) связано с изучением вопросов физиологии кровообращения, второе (1889-1901) — физиологии пищеварения, третье (1901-1936) — высшей нервной деятельности животных и человека.

Изучение функций высших отделов центральной нервной системы животных позволило вплотную подойти к раскрытию законов деятельности головного мозга человека. И. П. Павлов создал учение о типах высшей нервной деятельности, которое имеет не только теоретическое, но и практическое значение.

Вершиной творчества И. П. Павлова является его учение о сигнальных системах коры головного мозга. И. П. Павлов показал качественные особенности высшей нервной деятельности человека, изучил и описал механизмы, с помощью которых осуществляется абстрактное мышление, присущее только человеку.

Предыдущая12345678910111213141516Следующая

Краткая история физиологии

Физиология обязана своим возникновением потребностям медицины, а также стремлению человека познать себя, сущность и проявления жизни на различных уровнях ее организации. Потребность сохранения жизни человека была на всех этапах его развития, и уже в древние времена формировались элементарные представления о деятельности организма человека, являясь обобщением накопленного опыта человечества. Отец медицины Гиппократ (460- 377 гг. до н. э.) представлял организм человека как некое единство жидких сред и психического склада личности, подчеркивал связь человека со средой обитания и то, что движение является основной формой этой связи. Это определяло его подход к комплексному лечению больного. Аналогичный в принципе подход был характерен для врачей древнего Китая, Индии, Ближнего Востока и Европы.

В средние века господствовали далекие от реалий представления, основанные на постулатах римского анатома Галена, и засилие церкви определило неопределимую преграду между телом и душой.

Эпоха Возрождения (XVI-XVII века) с ее возросшими потребностями общественного производства пробудила к жизни науку и культуру, а несомненные успехи физики и химии, обращение к ним врачей определили стремление объяснить деятельность организма человека на основе происходящих в нем химических (ятрохимия) и физических (ятрофизика) процессов. Однако уровень знаний наук того времени, конечно же, не мог составить сколько-нибудь полное и адекватное представление о физиологических функциях.

Вместе с тем изобретение микроскопа и углубление знаний о микроскопическом строении тканей животных побуждает к исследованию функционального назначения открываемых структур. Успехи химии и изучения кругооборота веществ в природе направляют интересы человека к судьбе поступающих в его организм веществ, что становится предметом исследовательского интереса. Совершенствование точных наук, естествознания в целом и философии определяет обращение человеческой мысли к механизмам движения. Так, Р. Декарт (1596- 1650) формулирует рефлекторный принцип организации движений, в основе которого лежит побуждающий их стимул.

Особое место в науке о человеке сыграло открытие английским врачом В. Гарвеем (1578-1657) кровообращения. Обладая обширными анатомическими знаниями, В. Гарвей проводил экспериментальные исследования на животных и наблюдения на людях, основал физиологию как науку, основным методом которой является эксперимент. Официальной датой возникновения физиологии человека и животных как науки принят 1628 г. - год выхода в свет трактата В. Гарвея «Анатомическое исследование о движении сердца и крови у животных». Это произведение послужило стимулом к изучению деятельности организма в экспериментах на животных как основного объективного источника знаний.

В XVII веке выполняется ряд исследований по физиологии мышц, дыхания, обмена веществ. В Европе в XVIII веке возникает учение о «животном электричестве» (Л. Гальвани, 1737-1798), переросшее в один из ведущих разделов современной науки - электрофизиологию. Получает дальнейшее развитие принцип рефлекторной деятельности (И. Прохаска, 1749-1820). Вносится много ценного в понимание деятельности систем кровообращения (С. Хелс, 1667-1761), дыхания (Д. Пристли, 1733-1804), обмена веществ (А. Лавуазье, 1743-1794).

В этот период открывается Российская академия наук (1724), где Д. Бернулли выполнил первые в России экспериментальные исследования движения крови по кровеносным сосудам. В России солидные физиологические открытия сделаны М. В. Ломоносовым (1711-1765).

XIX век - период расцвета аналитической физиологии, когда были сделаны выдающиеся открытия практически по всем физио­логическим системам. Это происходило одновременно с бурным ростом естествознания, обретением фундаментальных знаний о при­роде: открытие закона сохранения энергии, клеточного строения организмов, формирование основ учения об эволюции жизни на Земле. Особое значение в развитии физиологии сыграли новые методические подходы и изобретения выдающихся физиологов той поры, о чем сказано в предыдущем разделе. Все это определило в середине XIX века выделение физиологии в самостоятельную науку. В университетах России, Англии создаются физиологические лабора­тории, интенсифицируются физиологические исследования в Европе.

Во второй половине XIX века - начале XX столетия физио­логия в России становится одной из передовых в мировой науке, в чем выдающуюся роль сыграли столичные школы И. М. Сеченова (1829-1905), И. П. Павлова (1849-1936), известные школы Ка­зани, Киева, Одессы, Томска, Екатеринбурга. Российская наука при всей ее самобытности, методологической оригинальности под­держивала теснейшие творческие связи с ведущими физиологиче­скими школами Западной Европы, а затем и Америки.

XX век - период интеграции и специализации наук, не обошел величайшими открытиями и физиологию. В 40-50-х годах ут­верждается мембранная теория биоэлектрических потенциалов (А.Л. Ходжкин, Э.Ф.Хаксли, Б. Катц). Роль этой теории в ус­тановлении ионных механизмов возбуждения нейронов в 1963 г. отмечается Нобелевской премией (Д. К. Экклс, Э. Ф. Хаксли, А. Л. Ходжкин). Делаются принципиальные открытия в области цитофизиологии и цитохимии.

Конец XIX и начало XX века - период определяющих успехов в области физиологии нервов и мышц как возбудимых тканей (Дюбуа-Реймон, Э. Ф. Пфлюгер, П. Г. Гейденгайн, Ю. Бернштейн, Г. Л. Гельмгольц). В России особенно заметные исследования в этом разделе науки выполняются Н. Е. Введенским (1852-1922),

А. И. Бабухиным (1835-1891), Б. Ф. Вериго (1860-1925),

В. Я. Данилевским (1852-1939), В. Ю. Чаговцем (1873-1941). За открытия теплообразования в мышцах А. В. Хиллу (1886-1977) и О. Ф. Мейергофу (1884-1951) присуждается Нобелевская премия. Достижением XX века, отмеченным Нобелевской премией 1936 г., явилось открытие химического механизма передачи нервного им­пульса в синапсах О. Леви (1873-1961) и Г. X. Дейлом (1875- 1968). Развитие этого направления в трудах У. Эйлера, Д. Аксель рода и Б. Катца было отмечено Нобелевской премией в 1970 г. А. Д. Эрлангер и Г. Гассер были отмечены в 1944 г. той же премией за успехи в изучении проведения импульсов по нервным волокнам. В решение проблемы возбуждения нервов и мышц в этот период существенный вклад вносят и советские физиологи - А. А. Ухтомский (1875-1942), А. Ф.Самойлов (1867-1930), Д. С. Воронцов (1886-1965).

XIX и XX века ознаменованы многими значительными успехами в изучении функций мозга.

Выдающаяся роль в исследовании функций мозга принадлежит И. М. Сеченову (1829-1905), который в 1862 г. открыл явление торможения в ЦНС, что во многом определило последующие успехи исследований координации рефлекторной деятельности. Идеи, изложенные И. М. Сеченовым в книге «Рефлексы головного мозга» (1863), определили то, что к рефлекторным актам были отнесены психические явления, внесли новые представления в механизмы деятельности мозга, наметили принципиально новые подходы к его дальнейшим исследованиям. При этом ученый подчеркнул определяющую роль внешней среды в рефлекторной деятельности мозга.

На качественно новый уровень вывел теорию рефлекторной деятельности мозга И. П. Павлов (1849-1936), создав учение о высшей нервной деятельности (поведении) человека и животных, ее физиологии и патологии. И. П. Павлов основал школу отечественных физиологов, внесшую выдающийся вклад в мировую науку.

В числе учеников и последователей И. П. Павлова академики П. К. Анохин, Э. А. Астратян, К. М. Быков, Л. А. Орбели и многие другие, создавшие отечественные физиологические научные школы.

Идеи И. П. Павлова о рефлекторной деятельности мозга получили дальнейшее развитие в учении о функциональных системах П. К. Анохина (1898-1974), которые являются основой организации сложных форм поведенческой деятельности и обеспечения гомеостаза организма человека и животных. Трудно переоценить вклад в физиологию нервной системы И. С. Бериташвили (1885-1975), открывшего фундаментальные закономерности в деятельности мозга и создавшего ряд оригинальных теорий о ее организации.

Э. А. Астратян (1903-1981) - автор ряда фундаментальных работ, в которых развивал основные положения И. П. Павлова о высшей нервной деятельности. К. М. Быков (1887-1959) основал учение о двусторонней связи коры головного мозга с внутренними органами, о кортико-висцеральной патологии. Его ученик В. Н. Черниговский (1907-1981) обогатил науку учением об интероцепции висцеральных органов, регуляции системы крови.

Л. А. Орбели (1882-1958) основал учение об адаптационно-трофических влияниях симпатической нервной системы на соматические и вегетативные функции организма, явился одним из основателей эволюционной физиологии.

Л. С. Штерн (1878-1968) создала учение о гематоэнцефалическом и гистогематическом барьерах, обеспечивающих гомеостатические функции в организме человека и животных.

Велика заслуга А. А. Ухтомского (1875-1942) в изучении физиологии ЦНС. Его учение о доминанте - «основном принципе деятельности» мозга и поныне питает идеи организации целенаправленной деятельности человека и животных.

Несомненно, что вклад отечественных физиологов в мировую науку о мозге оригинален и общепризнан, многое сделано и в изучении локализации функций в мозге (В. М. Бехтерев, М. А. Миславский, Ф. В. Овсянников и др.), в разработке методов его изучения.

В конце XIX и в XX веке физиология мозга успешно развивается в Европе и Америке. В большой мере это связано с созданием нейронной теории рефлекторной деятельности мозга на основе его гистологического исследования К. Гольджи (1844-1926) и С. Рамон-и-Кахалем (18512-1934), удостоенными Нобелевской премии в 1906 г., а затем Лоренте де Но.

Выдающуюся роль в изучении функций центральной нервной системы сыграл Ч. С. Шеррингтон (1856-1952), разработавший и сформулировавший основные принципы координационной деятельности мозга. Эти работы были удостоены в 1932 г. Нобелевской премии. Премию одновременно получил и электрофизиолог

Э. Д. Эдриан (1889-1977), также внесший существенный вклад в современные представления о деятельности мозга. Заслуга Ч. С. Шеррингтона и в том, что он воспитал плеяду физиологов, которым наука обязана многими выдающимися открытиями (Р. Гранит, Р. Магнус, У. Пенфилд, Дж. Экклс и др.).

Р. Магнусу (1873-1927) наука обязана учением об установочных рефлексах, распределяющих тонус скелетных мышц. Р. Гранит, X. К. Хартлайнен и Д. Уолд в 1967 г., а Д. Хьюбел и Т. Визел в 1981 г. были удостоены Нобелевской премии за работы по физиологии и биохимии зрительного анализатора. В этот раздел науки внесли достойный вклад также отечественные ученые П. П. Лазарев (1878-1942) и В. С. Кравков (1893-1951).

Современная физиология ретикулярной формации мозга создана экспериментальными исследованиями Г. Мэгуна и Д. Моруцци. Следует подчеркнуть, что основой для проведения этих исследований послужили результаты научных работ И. М. Сеченова и В. М. Бехтерева.

Конечно, функции мозга привлекали и привлекают к себе внимание многих выдающихся ученых мира и в этой области успешные поиски продолжаются. Об основных их результатах сказано в соответствующих главах учебника с упоминанием имен и ныне здравствующих физиологов.

Физиология висцеральных органов в истории науки занимает весьма заметное место со времени возникновения физиологии до наших дней. XIX и XX века ознаменованы крупными открытиями по механизмам регуляции деятельности сердца и кровеносных сосудов: К.Людвиг (1816-1895), И. Ф. Цион (1842-1912), К. Бер нар (1813-1878), Ф.В.Овсянников (1827-1906), В. Эйнтховеи (1860-1927), Э. Г. Стерлинг (1866-1927) и др.

За исследования капиллярного кровообращения в 1920 г. Нобелевской премии был удостоен А. Крог (1874-1949). В советское время крупный научный вклад в физиологию сердечно-сосудистой системы внесли В. В. Парин (1903-1971), В. Н. Черниговский, А. М. Чернух и др.

Богат XX век успехами в области физиологии дыхания, особенно его регуляции (Н. А. Миславский, К. Гейманс, Д. С. Холдейн). За работы в этой области К. Гейманс (1892-1968) получил Нобелевскую премию в 1939 г. Крупные открытия были сделаны по биохимии газообмена и клеточного дыхания (А. Крог, Д. Баркрофт), а О. Г. Варбургу (1883-1970) за открытие ферментативного механизма клеточного дыхания была присуждена Нобелевская премия в 1931 г. Велик вклад в физиологию дыхательного центра М. В. Сергиевского (1898-1982).

Физиологией пищеварения в разное время занимались выдающиеся физиологи Европы и Америки (К. Людвиг, К. Бернар, Р. Геденгайн, Э. Старлинг и др.), но «пересоздал физиологию пищеварения» (так сказано в дипломе Нобелевского лауреата 1904 г.) И. П. Павлов - первый среди физиологов мира и первый Российский ученый, удостоенный этого высокого звания.

История развития физиологии

Внутриклеточному пищеварению были посвящены работы еще одного Нобелевского лауреата - И. И. Мечникова (1845-1916). В лаборатории И. П. Павлова работали Е. С. Лондон, И. П. Разенков, Г. В. Фольборт, Б. П. Бабкин и др., которые продолжили славные традиции первооткрывателей в области физиологии пищеварения. Выдающуюся роль в этой области науки сыграл А. М. Уголев (1926-1992), которому принадлежат честь открытия мембранного кишечного пищеварения и определение его места в пищеварительном конвейере, современные концепции эндокринной деятельности желудочно-кишечного тракта, эволюции секреторных процессов, теория адекватного питания и другие оригинальные теории и гипотезы в физиологии.

В физиологии висцеральных систем формировались основные концепции функциональной организации автономной (вегетативной) нервной системы. Об этих страницах истории физиологии достаточно подробно написано в разделе 4.3 учебника.

XX век богат открытиями в области изучения деятельности эндокринных желез. В 1923 г. Нобелевская премия присуждена Ф. Г. Бантингу (1891-1941). Д. Маклеоду (1876-1935) и Ч. Г. Бесту (1899-1978) за работы по инсулину. Этой премии в 1947 г. удостоен Б. А. Усай (1887-1971) за открытия в области физиологии гипофиза. Работы по изучению функции этой железы были отмечены и в 1977 г. - Р. Гиймен, Э. В. Шалли и Р. С. Ялоу. В 1950 г. Нобелевской премии за исследование функции надпочечников удостоены Ф. Ш. Хенч (1896-1965), Э. К. Кендалл (1886-1972) и Т. Рейхштейн (р. в 1897).

В 1971 г. Нобелевским лауреатом стал Э. У. Сазерленд (1915- 1974), который открыл роль АМФ в регуляции обмена веществ, показал его значение как посредника в гормональном воздействии на обмен веществ.

Отечественным физиологам принадлежит приоритет в создании искусственного сердца (А. А. Брюхоненко), записи ЭЭГ (В. В. Правдич-Неминский), создании таких важных и новых направлений в науке, как космическая физиология, физиология труда, физиология спорта, исследовании физиологических механизмов адаптации, регуляции механизмов реализации многих физиологических функций. Эти и многие другие исследования имеют первостепенное значение для медицины.



Характеристика основных физиологических свойств возбудимых тканей. Понятие об ионной ассиметрии.

Нервная ткань обладает возбудимостью. Функции возбудимой ткани базируются на 2 основных свойствах: 1-несимметричного расположения потенциалобразующих ионов по отношению к мембране;2- избирательная проницаемость клеточной мембраны. Ионная асимметрия: основными потенциалобразующими ионами яв-ся К и Na. В некоторых тканях таковыми являются Са и CL. Na больше вне клетки, а К- в клетке. Данные ионы стремятся перемещаться через мембрану.Na стремится войти в клетку вдоль конц.градиента, а К выйти вдоль конц.градиента. конц.градиент для Na и Kсохраняют свое направление всегда, и в состоянии покоя, и в состоянии раздражения. 2 .избират.проницаемость мембраны: мембрана возбудимых тканей образована 2 слоем фосфолипидов, пронизанными ионными каналами. Ионные каналы- интегральные белки мембраны, в ряде случаев обладающие воротным механизмом- канал может быть открытым и закрытым. Р группа обращена к воде, гидрофильна. Жирные кислоты липофильны и обращены друг к другу. Проницаемость Na-канала зависит от функц-го состояния возбудимой ткани:1-покой- каналы закрыты; 2- при действии раздражителя канал на короткое время открывается. К-каналы всегда открыты в независимости от функц-го состояния возбудимой ткани. Время от времени мембрану пронизывают другие белки- натрий-калиевые насосы. У этих белков имеется 3 центра связывания: для натрия, калия, и АТФ.

Строение скелетной мышцы

состоят из мышечных волокон, каждое мышечное волокно сост.миофибрилл. миофибриллы имеют выраженную полосатую исчерченность. В ней правильно чередуются светлые и темные участки. Темные участки обозначаются как диск А-анизотропные(разные), т.к. они имеют разную оптическую плотность. Светлые участки-дискI-изотропные- имеют одинаковую оптическую плотность. В составе темного участка имеются светлые- зона Н.миофибрилла состоит из более тонких филаментов- протофибрилл. Протофибриллы- сократимые белки мышцы. В мышцах имеются 2 типа протофибрилл- актин и миозин. Актин- белок полимер, имеет конформацию 2нитчатой спирали, время от времени перекрученные. Мономером является глобулярный белок. Длина 1мкм, диаметр 7-7нм. В местах соединения 2 нитей имеются углубления- канавки. В молекулу актина встроены 2 регуляторных белкатропонин и тропомиозин. Миозин-белок полимер, состоит из множестваполипептидных цепей. В составе каждой цепи различают: головку, шейку и хвост. Хвосты всех цепей скручены в виде жгута. Головки располагаются на поверхности этого каната, а между хвостом и головкой располагается подвижная шейка.миозин длиннее и толще актина: длина-1,5мкм, диаметр-14нм. О теории: структуры были изучены хансон и хаскли. Удостоены нобелевской премии в 1962г.. суть теории: при возбуждении мышцы миозин начинает взаимодействовать с актином. Находясь в центре саркомера, миозин шаг за шагом, изменяя положение головки, подтягивает молекулы актина и справа и слева к центру. При этом длина саркомера уменьшается, соответственно уменьшается длина миофибриллы, длина мыш.волокна, но длина актина и миозина не изм-ся.



Механизм мыш.сокращ-ия: медиатор из нервного окончания выделяется на мышцу. В мышце в районе синапса возникает ПД. Деполяризация распространяется вдоль мышечного волокна. Цистерны СПР контактируют с мембраной, поэтому деполяризация мембраны мышечного волокна вызывает изменение проницаемости мембраны СПР: в мембране СПР открываются Са-каналы. Са выходит из цистерн и заполняет пространство с миофибриллой. Сасвязыватся с Са-чувствительными центрами тропонина. Конформациятропонина изменяется.Троонин перестает удерживать электростатическитропомиозин на поверхности актина. Молекулы тропомиозина сваливаются в канавку, открывая центры связывания актина с миозином. Головкка миозина располагается под прямым углом по отношению к актину. На этих головках сейчас АДФ и фосфат. Головки миозина связываются с активными центрами актина. Связь актина и миозина несколько изменяет конформацию миозина, в результате чего фосфаты отсоединяются от головки миозина. Отсоединение вызывает существенное конформационное изменение миозина: происодит переориентация шейки миозина по отношению к головке. Шейки наклоняются к продольной оси миозина. В результате возникает тянущее усилие. Мышца миозин совершает гребковое движение. По завершении движения от головки миозина отсоединяется и АДФ. Утратив АДФ и фосфат, головка прочно связывается с актином. Для того, чтобы отсоединить головку миозина от актина, с головкой миозина связывается АТФ. Конформация головки изменяется, вследствие чего сродство актина и миозина резко снижается. Головка миозина отсоединяетя от актина. Сразу же после этого миозин приобретает атефазную активность и подвергает гидролизу АТФ. Выделяется энергия. Энергия расходуется на разгибание головки миозина.

Газообмен в капиллярах малого круга. Значение рО2 и рСО2 в венозной крови и в легких. Механизмы освобождения СО2 из соединений, в виде которых этот оксид транспортируется кровью. Понятие о кислородной емкости крови.

Газообмен - это транскапиллярный обмен дыхательных газов (СО2 и О2). Осуществляется между венозной кровью и воздухом альвеол, в малом кругу кровообращения, и между артериальной кровью и тканями в большом кругу кровообращения.

Газообмен в капиллярах малого круга.

Значение рО2 и рСО2 в

В легких: Тканях:

рО2 = 103 mmHgpO2 = 40 mmHg

pCO2 = 40 mm Hg pCO2 = 46 mmHg

1. Разрушить соединения, в виде которых СО2 транспортируется в кровь и вывести их.

2. Оксигенировать кровь

1) HHbCO2 – диссоциирует по градиенту давления:

HHbCO2 àHHb + CO2

2) Чем больше Hb сбрасывает СО2, тем легче он связывается с О2 по градиенту давления:

HHb + O2 = HHbO2

В эритроците сейчас находятся следующие вещества:

KHCO3 иHHbO2, которые взаимодействуют друг с другом:

KHCO3 + HHbO2-àKHbO2 + H2CO3

Под действием карбоангидразы:

H2CO3 -àCO2 + H2O

К этому времени мы освободились от двух соединений, транспортируемых СО2 (HHbCO2 иKHCO3)

Нам осталось освободится от NaHCO3 находящийся в плазме крови.

В МКК Н2СО3 ферментативно расщепляется на H2OиCO2, а не спонтанно диссоциирует на Н+ и НСО3-

В малом кругу в крови практически нет иона бикарбоната, поэтому НСО3- дифундирует из плазмы крови в эритроците. В эритроците НСО3- связывается с протоном Н+ чуть –чуть подкисливая кровь образуется Н2СО3 – расщепляется на Н2О и СО2:

HCO3- + H+ àH2CO3 àH2O + CO2

Итак, все три соединения в виде которых СО2 транспортируется в МКК. Это:

KHCO3 – в эритроците

NaHCO3 – в плазме

HHbCO3 – в эритроците

Кислородная емкость крови _ это количество мл О2 транспортируется кровью

КЕК ограниченна содержанием Нb

Hb – 14,2% - количество грНb 100 ml

1 грHb может связываться с 1,34 мл О2 – коэффициент Хюффнера

КЕК = 1,34 * 14=19 об.%

Объемный % - количество мл газов, содержащихся в 100 мл крови.

Этапы развития физиологии. Вклад отечественных ученых в развитие физиологической науки

Год становления физиологии - 1628 г. - вышла книга английского анатома и физиолога У. Гарвея "Учение о движении сердца и крови в организме" - впервые описан большой круг кровообращения. Периоды физиологии:допавловский - 1628-1883 г.; павловский - с 1883 г. - диссертация И. Павлова "Центробежные нервы сердца". Павловский этап базируется на трех основных принципах - организм - это единая система, которая объединяет:различные органы в их сложном взаимодействии между собой, организм - единое целое с окружающей средой; принцип нервизма.Из русских ученых, работающих в XIX веке в области физиологии, следует отметить А. М. Филомафитского, В. А. Басова, Н. А. Миславского, Ф. В. Овсянникова, А. Я. Кулябко, С. П. Боткина и др. Одним из них принадлежат открытия в области физиологии крови и кровообращения, другие изучали функции пищеварения, третьи - дыхания, нервной системы и т. д. Особую роль в области физиологии сыграли ученые И. М. Сеченов и И. П. Павлов.Иван Михайлович Сеченов (1829 - 1905) - основоположник русской физиологии. И. М. Сеченов открыл явления торможения в центральной нервной системе, впервые изучил состав газов крови, выяснил роль и значение гемоглобина в переносе углекислого газа и т. д. Исключительное значение имела книга И. М. Сеченова "Рефлексы головного мозга", вышедшая в 1863 г. В ней впервые высказано положение, что вся деятельность головного мозга носит рефлекторный характер.Иван Петрович Павлов (1849 - 1936) - великий ученый-материалист. Основные труды его посвящены физиологии кровообращения, пищеварения и больших полушарий головного мозга. Исследования И. П. Павлова в области физиологии кровообращения привели к созданию учения о регуляции деятельности сердечно-сосудистой системы. И. П. Павлов установил, что деятельность различных органов пищеварительной системы регулируется нервной системой и зависит от различных явлений внешней среды.В трудах И. П. Павлова нашла блестящее подтверждение высказанная И. М. Сеченовым мысль о рефлекторном характере деятельности органов. Различные раздражения из внешней среды, которые оказывают действие на организм, воспринимаются посредством нервной системы и вызывают изменение деятельности тех или иных органов. Такие ответные реакции организма на раздражение, осуществляемые через нервную систему, носят название рефлексов.Особое значение имеют исследования И. П. Павлова, посвященные изучению функций коры головного мозга. Этими исследованиями было показано, что в основе психической деятельности человека лежат физиологические процессы, протекающие в коре головного мозга.

Реферат

по дисциплине «Анатомия»

Основные современные пути развития анатомии.

Киевская анатомическая школа.

Значение научных достижений для развития анатомии человека»

Выполнила:

студентка 1 курса

группы 11 ф/л

Лапикова Марина

г. Ялта, 2012

Ученые, внесшие вклад в изучение анатомии, физиологии и медицины ……………………………………………………….2

Основные современные пути развития анатомии……………..7

Киевская анатомическая школа…………………………………11

Связь анатомии и физиологии с другими науками, изучающими человека……………………………………………………………13

Значение для человека знаний о строении и функциях его организма…………………………………………………………..14

Список использованной литературы……………………………..16

Ученые, внесшие вклад в изучение анатомии, физиологии и медицины

· Гиппократ (около 460 до н.э., остров Кос - 377 до н.э.)

Древнегреческий врач, естествоиспытатель, философ, реформатор античной медицины.

В трудах Гиппократа, ставших основой дальнейшего развития клинической медицины, отражены представление о целостности организма; индивидуальный подход к больному и его лечению; понятие об анамнезе; учения об этиологии, прогнозе, темпераментах.

· Аристотель (384 до н. э., Стагир - 322 до н. э.)

- древнегреческий философ. Ввел название «аорта». Аристотель отметил общие черты сходства человека и животного, заложил основы описательной и сравнительной анатомии.

· Клавдий Гален (129 или 131- около 200)

- античный медик. Описал около 300 мышц человека. Доказал, что не сердце, а головной и спинной мозг являются «средоточием движения, чувствительности и душевной деятельности». Сделал вывод, что «без нерва нет ни одной части тела, ни одного движения, называемого произвольным, ни единого чувства». Перерезав спинной мозг поперёк, Гален показал исчезновение чувствительности всех частей тела, лежащих ниже места разреза. Доказал, что по артериям движется кровь, а не «пневма», как считалось ранее.

Создал около 400 трудов по философии, медицине и фармакологии, из которых до нас дошло около сотни. Собрал и классифицировал сведения по медицине, фармации, анатомии, физиологии и фармакологии, накопленные античной наукой.

Описал четверохолмие среднего мозга, семь пар черепномозговых нервов, блуждающий нерв; проводя опыты по перерезке спинного мозга свиней продемонстрировал функциональное различие между передними (двигательными) и задними (чувствительными) корешками спинного мозга.

· Парацельс (1499 – 1541 гг)

Знаменитый врач. Средневековой медицине, в основе которой лежали теории Аристотеля, Галена и Авиценны, он противопоставил «спагирическую» медицину, созданную на базе учения Гиппократа. Он учил, что живые организмы состоят из тех же ртути, серы, солей и ряда других веществ, которые образуют все прочие тела природы; когда человек здоров, эти вещества находятся в равновесии друг с другом; болезнь означает преобладание или, наоборот, недостаток одного из них. Одним из первых начал применять в лечении химические средства.

Парацельса считают предтечей современной фармакологии, ему принадлежит фраза: «Всё есть яд, и ничто не лишено ядовитости; одна лишь доза делает яд незаметным».

· Андреас Везалий (1514 – 1654 гг)

- итальянский естествоиспытатель. Убедившись в том, что многие анатомические тексты Галена, известного римского врача (ок. 130–200 н.э.), основаны на результатах вскрытий животных и, следовательно, не отражают специфики анатомии человека, Везалий решил предпринять экспериментальные исследования человеческого тела. Изучая труды Галена и его взгляды на строение человеческого тела, Везалий исправил свыше 200 ошибок канонизированного античного автора. Итогом стал трактат О строении человеческого тела (De humani corporis fabrica, 1543).

· Уильям Гарвей (1578 – 1657 гг)

- английский медик, основоположник физиологии и эмбриологии. Организовал публичную лекцию в Лондоне. В этой лекции он впервые изложил свое видение систем кровообращения в организме человека, а также других теплокровных животных, провел ряд опытов и экспериментов, которые позволили ему сделать ряд наблюдений. Он вычислил, что кровь движется по кругу, вернее, по двум кругам: малому – через легкие и большому – через все тело.

· Луиджи Гальвани (1787 – 1796 гг)

- итальянский врач, анатом, физиолог и физик, один из основателей электрофизиологии. Первым исследовал электрические явления при мышечном сокращении («животное электричество»).

· Луи Пастер (1822 – 1895 гг)

- французский микробиолог и химик. Пастер, показав микробиологическую сущность брожения и многих болезней человека, стал одним из основоположников микробиологии и иммунологии.

· Пирогов Николай Иванович (1810 – 1881 гг)

- русский хирург и анатом, естествоиспытатель и педагог. Основное значение всей деятельности Пирогова состоит в том, что своим самоотверженным и часто бескорыстным трудом он превратил хирургию в науку, вооружив врачей научно обоснованной методикой оперативного вмешательства.



· Сеченов Иван Михайлович (1829 -1905 гг)

Выдающийся русский физиолог, учёный-энциклопедист, патологоанатом, гистолог, токсиколог, психолог, культуролог, антрополог, естествоиспытатель, химик, физико-химик, физик, биохимик, эволюционист, приборостроитель, военный инженер, педагог, публицист, гуманист, просветитель, философ и мыслитель-рационалист, создатель физиологической школы

· Мечников Илья Ильич (1845 -1916 гг)

- российский и французский биолог (зоолог, эмбриолог, иммунолог, физиолог и патолог). Один из основоположников эволюционной эмбриологии, первооткрыватель фагоцитоза и внутриклеточного пищеварения, создатель сравнительной патологии воспаления, фагоцитарной теории иммунитета, основатель научной геронтологии. Лауреат Нобелевской премии в области физиологии и медицины (1908).

· Палов Иван Петрович (1849 – 1936 гг)

- один из авторитетнейших учёных России, физиолог, психолог, создатель науки о высшей нервной деятельности и представлений о процессах регуляции пищеварения; основатель крупнейшей российской физиологической школы; лауреат Нобелевской премии в области медицины и физиологии 1904 года «за работу по физиологии пищеварения».

· Боткин Сергей Петрович (1832 – 1889 гг)

Русский врач-терапевт и общественный деятель, создал учение об организме как о едином целом, подчиняющемся воле.

· Ухтомский Алексей Алексеевич (1875 – 1942 гг)

- российский и советский физиолог. Главным открытием Ухтомского принято считать разработанный им принцип доминанты - теорию, способную объяснить некоторые фундаментальные аспекты поведения и психических процессов человека. Принцип доминанты описан им в работе «Доминанта как рабочий принцип нервных центров» и в других научных трудах. Этот принцип явился развитием идей Н. Е. Введенского.

· Бурденко Николай Нилович (1876 – 1946 гг)

- русский и советский хирург, организатор здравоохранения, основоположник российской нейрохирургии. Николай Бурденко создал школу хирургов экспериментального направления, разработал методы лечения онкологии центральной и вегетативной нервной системы, патологии ликворообращения, мозгового кровообращения и др. Производил операции по лечению мозговых опухолей, которые до Бурденко насчитывались во всем мире единицами. Он впервые разработал более простые и оригинальные методы проведения этих операций, сделав их массовыми, разработал операции на твёрдой оболочке спинного мозга, производил пересадку участков нервов. Разработал бульботомию - операцию в верхнем отделе спинного мозга по рассечению перевозбуждённых в результате травмы мозга проводящих нервных путей.

Возникла в глубокой древности из потребностей медицины, так как для предупреждения болезней и лечения людей необходимо было знать строение организма и функции органов. Поэтому анатомию и физиологию изучали врачи древней Греции и Рима. Физиологические познания древних ученых основывались главным образом на догадках, вивисекции производились очень редко и поэтому многие заключения о функциях тела были неточными или ошибочными.

Немногочисленные физиологические факты, полученные учеными древнего мира, намеренно замалчивались до XIV-XV вв. во времена феодализма, а идеалистические умозрительные предположения древних о существовании души, не зависимой от тела, были канонизированы во всех религиозных верованиях и утверждались как непреложные истины. В средние века религиозные догмы насаждались насильственно, а научные знания жестоко искоренялись. Католическая церковь запрещала вскрывать трупы, без чего невозможны точные знания строения организма. В средние века религия привела к застою экспериментальную науку и нанесла огромный вред ее развитию.

Возрождение анатомии и физиологии началось с крушением феодального общества. А. Везалий (1514-1564) был не только основателем современной анатомии человека, но и проводил вивисекции на собаках, позволившие установить важные факты. М. Сервет (1509 или 1511-1553) подробно изучил малый круг кровообращения, изменение крови в легких и предположил существование в них капилляров. За свои смелые научные воззрения, направленные против религии, М. Сервет был сожжен церковниками.

Анатом Фабриций (1537-1619) обнаружил клапаны в венах.

Английский врач Уильям Гарвей (1578-1657) открыл большой круг кровообращения в своих опытах на животных и путем наблюдений на людях. Он строил свои выводы на результатах вивисекции животных, поэтому его научный труд является физиологическим и считается началом современной экспериментальной физиологии.

В первой половине XVII в. естествоиспытатель и философ Рене Декарт (1596-1650), проводя вивисекции на животных и наблюдения на людях, изучал роль сердца и пищеварение. Главное его открытие в физиологии - схема безусловного рефлекса на основе изучения акта мигания при прикосновении к роговице.

Идея Декарта о рефлексе получила дальнейшее развитие и трудах чешского ученого И. Прохаски (1749-1820).

Важный вклад в физиологию внес итальянский физиолог и физик Л. Гальвани (1737-1798) - один из основателей теории . Он открыл возникновение электрического тока и нервах и мышцах лягушки при одновременном соприкосновении их с двумя разнородными (железом и медью), что вызывало сокращение мышц, а затем доказал существование электричества в нервах. Итальянский физик и физиолог А. Вольта (1745-1827) разъяснил, что при одновременном соприкосновении нервов и мышц с двумя разнородными металлами действует внешний электрический ток, а не собственное электричество. Он показал, что электрический ток возбуждает органы чувств, нервы и мышцы. Таким образом, Гальвани и Вольта стали основателями электрофизиологии, получившей дальнейшее развитие в трудах немецкого физиолога Дюбуа-Реймона (1818-1896) и др.

Большое значение для физиологии имели биохимические исследования пищеварительных ферментов и роли ферментов в синтезе белков, проведенные А. Я. Данилевским (1838-1923).

Прогресс физиологии в XIX в. был основан на успехах физики и химии, приложенных к исследованию функций организма и его химического состава и сочетавшихся с вивисекцией. Это направление получило большое развитие.

Ч. Белл (1774-1842) и Ф. Мажанди (1783-1855) доказали, что центростремительные (чувствительные) и центробежные нервные волокна существуют раздельно. Ч. Белл обнаружил чувствительность мышц и утверждал о существовании нервного, рефлекторного кольца между мозгом и скелетной мышцей.

Ф. Мажанди доказал влияние нервной системы на регуляцию обмена веществ в органах и тканях - трофическую функцию нервной системы. Ученик Мажанди Клод Бернар (1813-1878) сделал много важных физиологических открытий: им показано пищеварительное значение слюны и поджелудочного сока, обнаружены синтез углеводов в печени и роль ее в поддержании уровня сахара в , роль нервной системы в углеводном обмене и в регуляции просвета кровеносных сосудов, открыты функции многих нервов, изучены давление крови, газы крови, электрические токи нервов и мышц и многие другие вопросы.

К. Бернар считал, что большинство важнейших функций организма регулируется нервной системой.

Значительный вклад в физиологию внесли в прошлом веке также И. Мюллер (1801-1858) и его школа. Ему принадлежат многочисленные исследования по анатомии, сравнительной анатомии, гистологии, эмбриологии, по физиологии органов чувств, голосового аппарата и рефлексам. Его ученик Г. Гельмгольц (1821-1894) сделал важные открытия в области физики, физиологии зрения и слуха, нервной и мышечной систем.

Для развития современной физиологии большое значение имеют исследования о природе нервного процесса (А. Ходжкин, А. Хаксли и др.), о закономерностях функционирования нервной системы (Ч. Шеррингтон, Р. Магнус, Д. Экклс и др.) и органов чувств (Р. Гранит), об активных веществах, участвующих в передаче нервного процесса (Г. Дейл, Д. Нахмансон, М. Бакк и др.), о функциях мозгового ствола (Г. Мэгун, Г. Моруцци и др.), головного мозга (Ю. Конорский), сердечнососудистой системы (В. Старлинг, К. Уиггерс, К. Гейманс и др.), о пищеварении (И. М. Бэйлисс, А. Айви и др.), деятельности ночек (А. Кешни, A. Ричардс и др.).

Русская физиологическая школа

В России физиология зародилась в XVIII в. Физиологические эксперименты производили B. Ф. Зуев (1754-1794), А. М. Филомафитский (1807-1849) и др. Первый отечественный учебник физиологии написал Д. М. Велланский (1773-1847). Вначале изучались физиология дыхания, крови и кровообращения, движения, а затем основным направлением стало исследование функций разных отделов нервной системы (Д. Н. Орловский, 1821 - 1856; А. А. Соколовский, 1822-1891 и др.).

Основателем отечественной школы физиологии был И. М. Сеченов (1829-1905). В 1862 г. он открыл торможение в нервных центрах, а в 1868 г. - суммацию возбуждения в них. Он один из первых проводил электрофизиологические исследования нервной системы. В труде И. М. Сеченова «Рефлексы головного мозга» излагается основная идея рефлекторной теории.

Рефлекторная теория И. М. Сеченова получила развитие в трудах И. П. Павлова (1849-1936), а также его непосредственных учеников - Н. Е. Введенского (1852-1922), А. Ф. Самойлова (1867-1930) и др.

Выдающиеся открытия в физиологии нервной системы сделали учителя И. П. Павлова, И. Ф. Цион (1842-1912) и Ф. В. Овсянников (1827-1906).

И. Ф. Цион совместно с К. Людвигом открыл центростремительный нерв, вызывающий замедление работы сердца и расширение кровеносных сосудов. Он обнаружил нервы, ускоряющие работу сердца; сосудосуживающее действие чревного нерва; окончательно доказал, что симпатические нервные волокна выходят из спинного мозга по передним корешкам, и впервые указал на взаимосвязь возбуждения и торможения в нервной системе. Он сформулировал гипотезу о торможении как интерференции двух сталкивающихся волн возбуждения.

Ф. В. Овсянников исследовал регуляцию кровообращения центральной нервной системой.

Первые работы И. П. Павлова также были посвящены регуляции нервной системой работы сердца и кровообращения и изучению трофической функции нервной системы, а затем И. П. Павлов и его ученики впервые детально изучили роль нервной системы в работе пищеварительных желез. Развивая идею И. М. Сеченова о рефлексах головного мозга, И. П. Павлов открыл условные рефлексы. Школа И. П. Павлова вскрыла основные физиологические закономерности работы головного мозга как органа, обеспечивающего соответствие функций организма изменяющимся условиям его существования.

И. П. Павлов исходил из ведущей роли нервной системы во взаимодействии целостного животного организма с внешней средой и в регуляции деятельности всех сто органов. Он экспериментально развил принцип нервизма, состоящий в исследовании влияния нервной системы на все функции организма. Школа И. П. Павлова занимает ведущее место в отечественной физиологии.

Н. Е. Введенский создал теорию единства возбуждения и торможения, их взаимных переходов, провел важные электрофизиологические работы по изучению функций нервов и мышц. Его ученик А. А. Ухтомский (1875-1942) обосновал принцип работы нервных центров - теорию доминанты, которая является дальнейшим развитием концепций И. П. Павлова и Н. Е. Введенского о взаимоотношениях нервных центров, а также создал представление об усвоении нервной системой ритма раздражений. А. Ф. Самойлов (1867-1930) сделал большой вклад в электрофизиологию и успешно развивал теорию о химических передатчиках нервного процесса.

В исследовании функций животных организмов И. М. Сеченов и И. П. Павлов и их ученики руководствовались идеями Ч. Дарвина. Для отечественной физиологии характерно исследование функции в эволюции, в их фило- и онтогенетическом развитии. Ученик И. П. Павлова Л. А. Орбели (1882-1958) создал современную отечественную эволюционную физиологию, глубоко изучил роль вегетативной нервной системы в деятельности головного мозга, органов чувств и скелетной мускулатуры.

В. М. Бехтерев (1857-1927) развил теорию условных рефлексов в патологии нервной системы людей и в психиатрии и глубоко изучил строение и функции нервной системы. Пользуясь методом условных (сочетательных) рефлексов на людях и животных и операциями на животных, он исследовал влияние внутренних органов на деятельность головного мозга и регуляцию работы внутренних органов головным мозгом.

В изучении влияния головного мозга на внутренние органы первые важные исследования принадлежат В. Я. Данилевскому (1852-1939). Он же один из первых изучил электрические явления в головном мозге.