Разработка, проектирование и эксплуатация систем утилизации низкопотенциального тепла.

Системы утилизации тепла с получением электроэнергии .

Данная технология позволяет использовать подлежащее утилизации (лишнее) тепло​ для производства электроэнергии.

Это тепловой электрогенератор, принцип работы которого использует органический цикл Ренкина (ORC).

Основным элементом данного теплового электрогенератора является ORC-турбина. Принцип действия, физические основы и аспекты применения данной технологии хорошо описаны в статье Белова Г.В. и Дорохова М.А. (МГТУ им. Н.Э. Баумана.​), которую для ознакомления на нашем сайте.

Системы генерации электроэнергии на основе Органического Цикла Ренкина могут быть успешно использованы во многих случаях, где необходимо утилизировать лишнее тепло получаемое в результате производственной деятельности предприятия например:

Утилизация тепла при сжигании растительной биомассы;

Утилизация тепла при сжигании древесных отходов лесопильного производства;

Утилизация теплоизбытков промышленного предприятия;

Утилизация тепла получаемого солнечными коллекторами;

Утилизация "лишнего" тепла от традиционных и когенерационных котельных (особенно в летнее время)

Мы предлагаем конкретное инженерное решение, проектирование и поставку соответствующего оборудования для реализации данной технологии на вашем предприятии с учетом ваших конктертых условий и особенностей реализации проекта.

Получение или использование тепла всегда связано с проблемой выброса неиспользованной части тепла в атмосферу. Так, например, на некоторых химических предприятиях температура отходящих газов превышает - 800С. В настоящий момент используются котельные на газообразном, жидком и твёрдом (дерево, уголь, щеп, лузга и т.д.) топливе, где температура на выходе от 110С и выше, в зависимости от эффективности котла.

Котельные, работающие на торфе, лузге, древесных отходах, биотопливе, мазуте и другом утилизируемом топливе

Цементные, химические, фармацевтические, мусоросжигательные заводы

Как правило, на энергоёмких предприятиях часть тепловой энергии используется, по возможности, для обеспечения теплом как зданий и сооружений самого предприятия так близь лежащих населённых пунктов. Однако достаточно большое количество тепла выбрасывается в атмосферу, либо утилизируется через градирни разной конструкции.

Градирни

Используя предлагаемые современные технологии, утилизируемые тепловые выбросы можно превращать в электроэнергию. В этом случае, предприятие может значительно снизить затраты на электроэнергию, тем самым снизив себестоимость продукции. При выработке тепла, сжигая различного рода отходы - щепу, лузгу, лигнин, бытовой, промышленный мусор и др. на выходе получается достаточно низкопотенциальное тепло - не более +300С. Однако этого достаточно для использования электрогенераторов на ORC-турбинах. В этом случае наиболее эффективны генераторы, использующие органический цикл Ренкина, схема которого представлена на рисунке №1.

Если кратко, то принцип использования тепла заключается в следующем. Внутри герметичного контура находится, например хладагент R -134, такой же, как в промышленном кондиционере. При нагреве внешним источником тепла с помощью теплообменника разделяющего среды, происходит кипение и превращение в газ жидкого хладогента. Газ расширяется и устремляется в турбину. Проходя через турбину и отдав свою тепловую энергию, газ поступает в конденсатор (охладитель), где конденсируется, превращаясь в жидкость. Насосом жидкость подаётся обратно в зону нагрева. Газ, проходящий через турбину, раскручивает ее и энергия вращения турбины преобразуется в электрическую энергию с помощью электрогенератора. Все как в чиллере, но наоборот. Если в чиллере с помощью электроэнергии подаваемой на мотор компрессора происходит сжатие хладогента (R -134) и доведение его до жидкого состояния с последующей выработкой холода и тепла, то в генераторе использующего цикл Ренкина, вместо компрессора стоит турбина, а электромотора - электрогенератор. Что касается размеров установок использующих цикл Ренкина, то как видно ниже на фото, чиллер и ORC-генератор с виду очень похожи и имеют примерно одни и те же размеры.


Генератор ORC с винтовой турбиной Чиллер с винтовым компрессором.

Генераторы ORC имеют разную конструкцию, используют как газообразный, так и жидкий источник тепловой энергии, как правило, с температурой выше 80С. Долголетний срок службы - 20 лет и более обусловлен тем, что турбина работает в герметичной и относительно низкотемпературной среде с чистым газом.

Генераторы ORC не требуют обслуживания, практически замена масла и подшипников в турбине и генераторе - раз в два года.

Ресурс генератора ORC превышает 100 000 часов и выше.

Единственный недостаток генератора ORC - это его низкий электрический КПД, который находится в пределах - 8-25%. Однако общий КПД (электичество+ выработка тепла) достигает 85% и более.

Но если посмотреть с практической точки зрения, например: теплогенератор на щепе тепловой мощностью 1000 кВт обеспечит выработку 100 кВт электроэнергии и порядка 680 кВт горячей воды с температурой 90/70С и выше. Это позволит, запитать все электрические насосы, системы управления, освещения и т.д. Таким, образом, практически отказаться от подвода дополнительной электроэнергии со стороны.

Так же если, вместо котла утилизатора, на выхлопе газопоршневой когенерационной установки электрической мощностью 1000 кВт установить генератор ORC, то общий электрический КПД достигнет 38+10=48%, при сохранении теплового КПД - около 50%.

Генераторы ORC производятся во многих странах мира. Наша компания готова Вам предложить реализацию данной технологии "под ключ" (проект, поставка, монтаж, пусконаладка, сервисное и постгарантийное обслуживание), для наиболее успешного решения задач энергоэффективности Вашего предприятия, жилого комплекса и т.д.



Cтраница 1


Утилизация низкотемпературной тепловой энергии в конденсаторах паровых установок и теплообменных аппаратах газовых установок принципиально может рассматриваться как одна из возможных областей применения термоэлектричества.  

Утилизация тепловой энергии уходящих газов котельных, дизельных и газотурбинных установок, регенерация тепловой энергии последних, получение нагретой воды в контактных водонагревателях, испарительное охлаждение и гигроскопическое опреснение воды, тепловлажностная обработка воздуха и мокрая очистка газов - вот далеко не полная область применения контактных аппаратов. Это объясняется, во-первых, простотой их конструкции и незначительной металлоемкостью по сравнению с рекуперативными поверхностными теплообменниками, возможностью изготовления из неметаллических материалов; во-вторых - повышением эффективности установок за счет более полного использования тепловой энергии, возможности улучшения параметров термодинамического цикла, регулирования расхода рабочего тела, внутреннего охлаждения или нагревания установки; в-третьих, - возможностью создания новых установок и их технических систем, обеспечивающих сокращение расхода топлива, воды, материалов, увеличение мощности и производительности, улучшение условий труда и уменьшающих загрязнение окружающей среды. Далеко не полностью еще раскрыты возможности использования процессов тепло - и массообмена в контактных аппаратах энергетических и теплоиспользующих установок. Этому способствует существующий чисто эмпирический подход к расчету, не позволяющий выявить внутреннюю связь физических явлений в сложных процессах тепло - и массообмена, отразить эту связь в расчетных зависимостях и использовать в практической деятельности.  

Установка предназначена для утилизации тепловой энергии сбросного (отработавшего) пара из автоклавов в действующем производстве силикатного кирпича. Автоклавная обработка кирпича-сырца насыщенным водяным паром является завершающей стадией при изготовлении силикатного кирпича, потребляющей значительное количество энергоресурсов. В связи с этим вопрос обеспечения более полного использования тепловой энергии отработавшего пара после автоклавов и рекуперации образующегося конденсата является актуальной задачей.  

Наиболее часто встречающиеся схемы утилизации тепловой энергии отходящих газов поршневых двигателей включают оборудование для производства пара с давлением до 15 кг / см, или горячей воды с температурой до 100 С, или прямое использование тепла отходящих газов в процессах сушки.  

Это позволило примерно удвоить утилизацию тепловой энергии и довести ее до 22 млн. Гкал в 1985 г. Реконструкция блоков теплообмена на 12 действующих установках первичной переработки нефти и модернизация технологических печей позволили сэкономить в одиннадцатой пятилетке почти 1 млн. т условного топлива. За счет использования в качестве топлива дополнительного количества нефтезаводского газа, который пока сжигается в факелах, а также внедрения 450 совершенных воздухоподогревательных устройств сэкономлено 0 5 млн. т условного топлива. За годы одиннадцатой пятилетки в отрасли сэкономлено около 900 млн. кВт - ч электроэнергии, 1 8 млн. т условного топлива.  

Эти блоки (рис. 3.49) предназначены для утилизации низкопотенциальной тепловой энергии вентиляционных выбросов за счет конвекции в блоках теплоутилизаторов, использующих в качестве теплоносителя водные растворы гликоля и этиленгликоля различных концентраций.  

Наряду с преимуществами метод сжигания нефтешламов имеет ряд недостатков, основными из которых являются сложность утилизации тепловой энергии, громоздкость оборудования, загрязнение атмосферы, что не всегда позволяет сделать вывод о нецелесообразности использования данного метода.  

Описываемая схема установки использования тепла сбросного пара и рекуперации конденсата позволяет в полном объеме высокоэффективно осуществлять утилизацию тепловой энергии сбросного пара и возвратить образующийся конденсат для повторного его использования как в технологическом процессе, так и в замкнутой системе водоснабжения для получения насыщенного пара на котельной установке.  

Ведение технологического процесса на особо сложных установках различных систем для раздельного и одновременного сжигания жидких, твердых и газообразных отходов химических производств, связанных технологически с утилизацией тепловой энергии и работающих на твердом, жидком или газообразном топливе.  

Ведение технологического процесса сжигания отходящих газов, природного газа, промышленных стоков, кубовых остатков и твердых отходов в печах сжигания разных конструкций с одновременным руководством аппаратчиками более низкой квалификации, а также обслуживание сложных установок различных систем для сжигания жидких, газообразных или твердых отходов химических производств, не связанных технологически с утилизацией тепловой энергии или химического сырья.  

Существует ошибочная точка зрения, что использование низкопотенциального тепла этого источника мало целесообразно. В то же время утилизация тепловой энергии пародистил-лятных фракций позволила бы значительно сократить расход оборотной (или прямоточной) воды, а также уменьшить тепловую мощность печей. Если лишь 50 % тепла, снимаемого в конденсаторах и холодильниках, использовать для предварительного подогрева сырья, то нефть с начальной температурой 10 С можно будет подогревать до 82 С.  

Нагрев холодной тюменской нефти, отобранной на головных сооружениях в одном из районов Татарии, и последующее ее-транспортирование в течение 10 - 180 мин. Отсюда следует, что обессоливание тюменской нефти при мягких режимных параметрах может быть осуществлено на пути ее движения к НПЗ и в тех случаях, когда эффект саморазогрева нефти при транспортировании будет устранен, но имеются резервы подлежащей утилизации тепловой энергии.  

При этом не только загрязняется воздушная среда, но и не используется образующаяся тепловая энергия. Ряд специалистов считает, что оно может быть оправдано только в том случае, если сочетаются утилизация тепловой энергии и очистка отходящих газов. Такой процесс происходит на мусоросжигательных станциях (заводах), которые имеют паровые или водогрейные котлы со специальными топками. Температура в топке должна быть не менее 1000 С, чтобы сгорели все дурнопахнущие примеси. Однако перед выбросом в атмосферу газы следует очищать, например, с помощью электрических фильтров.  

С практической точки зрения следует отметить, что если известна конечная ступень технологии переработки и утилизации ПО, то их следует классифицировать, основываясь в первую очередь на этой технологии. Конечным этапом обезвреживания большинства неутилизируемых городских ПО (исключая особо токсичные, а также инертный строительный мусор и т.п.) в настоящее время является сжигание. Это подтверждается опытом централизованного обезвреживания ПО в таких странах, как Дания, Финляндия, ФРГ, Швеция и др. При такой технологии важно сгруппировать все отходы так, чтобы они органически вливались в ту или иную технологическую цепочку, ведущую к конечной цели - - термическому обезвреживанию отходов с утилизацией тепловой энергии и других полезных продуктов. Исходя из этого нужно выделить горючие и негорючие отходы, внутри которых, в свою очередь, также есть различия в свойствах, фазовом состоянии, способах обработки и т.п. Отдельно следует выделить такие отходы, которые могут взаимно нейтрализовать друг друга или служить, например, реагентами для обработки возникающих сточных вод. Отходы, содержащие в себе особо полезные компоненты, например цветные металлы, должны выделяться и обрабатываться отдельно, чтобы конечный продукт не смешивался с менее ценными шламами. Необходимо определить тепловой баланс между горючими и негорючими отходами, внутреннюю потребность в тепле станции централизованного обезвреживания, необходимость в дополнительном топливе или объем и пути утилизации избыточного тепла. Это должно определять характер анкет или бланков единовременного учета отходов.  

к.т.н. Барон В.Г., директор ООО «Теплообмен», г. Севастополь

В настоящее время вопросам энергосбережения уделяется все более пристальное внимание, все активнее изыскиваются различные варианты снижения энергозатрат, рассматриваются и реализуются, в том числе и с привлечением значительных средств, разнообразные схемы, призванные сократить потребление энергии. В то же время все еще остается скорее исключением, чем правилом отбор тепла от разного рода охлаждающих жидкостей с целью его последующего использования. В большинстве случаев это тепло (к сожалению, зачастую низкопотенциальное) в огромных количествах рассеивается в окружающую среду через градирни, системы разомкнутого водяного охлаждения и просто путем конвективного теплообмена с окружающим воздухом. В итоге происходит тепловое загрязнение окружающей среды, непродуктивно расходуются средства на создание таких, отметим - не дешевых, систем, и, главное, бесцельно тратится энергия, которую параллельно, зачастую для покрытия нужд того же потребителя, вырабатывают генерирующие мощности. Причин такого невнимания к источнику энергии в виде сбросного тепла разнообразных систем охлаждения достаточно много. При этом еще недавно основными были объективные причины - чрезвычайно большие массо-габаритные характеристики первичных средств съема тепла, т.е теплообменников, и их, в значительной мере обусловленная этим, высокая стоимость и сложность компоновки на объекте. Кроме того, сдерживающим фактором являлась дороговизна тепловых насосов, призванных превратить бросовое низкопотенциальное тепло, повысив его температурный уровень, в продукт, подлежащий дальнейшему использованию. С сожалением следует отметить, что на сегодня, несмотря на то, что среди этих причин уже практически нет объективных, процесс энергосбережения путем повторного использования рассматриваемого тепла остается на точке замерзания. Сейчас большинство причин не достаточно активного использования этих вторичных ресурсов лежит уже в субъективной плоскости. Это как косность мышления, так и отсутствие знаний о современных технических устройствах, способных эффективно решать такие задачи. В данном случае имеется ввиду, что уже существует возможность перевода низкопотенциальной тепловой энергии на более высокий температурный уровень с помощью тепловых насосов, а также, как первое условие этого, имеются высокоэффективные теплообменные аппараты для съема низкопотенциального тепла. Высокоэффективные теплообменные аппараты являются первым и непреложным условием потому, что для утилизации сбросного тепла необходимо в первую очередь осуществить его эффективную передачу от охлаждающей жидкости какому-то теплоносителю, от которого это тепло может быть затем передано либо непосредственно потребителю, если есть процессы, требующие тепла на низком температурном уровне, либо передано в цикл теплового насоса для повышения энергетического качества этого тепла. Отсутствие в прежние годы эффективных теплопередающих аппаратов, особенно для вязких жидкостей, наряду с отсутствием эффективных тепловых насосов объективно препятствовало энергосбережению путем утилизации сбросного тепла. На сегодня такие устройства существуют и рассмотрению одного из современных теплопередающих аппаратов, созданного специально для целей отбора низкопотенциального тепла от сложных в теплотехническом отношении сред - моторных масел, посвящена настоящая статья.

Эти аппараты созданы путем модифицирования под специфичные условия теплообмена с высоковязкими средами эффективных теплообменных аппаратов типа ТТАИ. Аппараты ТТАИ, созданные сотрудниками ООО «Теплообмен» с использованием опыта, накопленного в ходе многолетних работ по созданию теплообменников для нужд советского военно-морского флота, отличаются высокой эффективностью и исключительно малыми массо-габаритными характеристиками. Кроме того, по сравнению с аналогами они удобнее в обслуживании и, как правило, лучше компонуются на объекте. Однако весь комплекс вышеуказанных преимуществ в полной мере проявляется при работе этих аппаратов на невязких капельных жидкостях, для обеспечения теплообмена между которыми эти аппараты и создавались. Причина в том, что среди значительного количества новых технических решений, заложенных как в конструкцию, так и в технологию изготовления этих аппаратов, имеется целый ряд специфичных решений, обеспечивающих тонкий механизм воздействия на определенные слои движущийся жидкости на базе учета особенностей теплофизических свойств таких рабочих сред. Представляло практический интерес разработать на базе этих теплообменников легкие и компактные аппараты для высокоэффективного отбора тепла от охлаждающего различные машины и механизмы смазочного масла.

Для этого предприятием ООО «Теплообмен» были проведены работы по модификации серийно выпускаемых аппаратов ТТАИ с учетом особенностей поставленной задачи. Такой модифицированный теплообменник, предназначенный для отбора тепла от охлаждающей компрессор масляно-воздушной смеси, был испытан в октябре 2006г. на испытательном стенде НПАО «ВНИИкомпрессормаш» в составе компрессорной установки.

Испытанный теплообменный аппарат сохранил в себе все основные признаки теплообменников семейства ТТАИ, т.е. это кожухотрубный аппарат с тонкостенным корпусом, выполненным из высоколегированной нержавеющей стали аустенитного класса, в котором подвижно (с использованием принципа плавающих трубных решеток, причем обеих) размещен высококомпактный, плотно упакованный трубный пучок, собранный из особотонкостенных труб малого диаметра (6мм), расположенных по специальным образом выполненной разбивке. Трубные решетки пучка, на которых предусмотрено особое двухступенчатое уплотнение с вестовыми отверстиями, изготовлены по специальной технологии из композитных материалов. Теплопередающие трубки пучка, также из высоколегированной нержавеющей стали аустенитного класса, но кислотостойкой группы (благодаря иному составу и сочетанию легирующих элементов), имеют специальный, т.н. «термодинамически целесообразный», профиль.

Указанные конструктивно-технологические особенности теплообменников ТТАИ позволяют получать целый комплекс потребительских свойств, выгодно отличающих эти аппараты от аналогов и открывающих широкие перспективы, как с технической, так и экономической точек зрения, их применения для утилизации вторичных энергоресурсов.

Среди основных технических отличий можно назвать следующие.

Установка трубного пучка в корпусе по принципу обеих плавающих трубных решеток позволяет не только снять опасения по поводу возможного возникновения термических напряжений в цепочке «корпус - трубная решетка - трубчатка», но и радикально повысить ремонтопригодность аппарата, т.к. обеспечивается возможность при техническом обслуживании и ремонте извлечь трубный пучок из корпуса. Это позволяет, в случае возникновения такой необходимости, заменить трубный пучок на новый без демонтажа аппарата, не говоря уже о доступе для осмотра и очистки межтрубной полости.

Применение двухступенчатого уплотнения с системой водосборных канавок и вестовых отверстий на плавающих трубных решетках обеспечивает не только гарантированное исключение взаимопроникновения рабочих сред в этом месте (что особенно важно в случае отбора от смазочных масел тепла водой или незамерзающими хладоносителями), но и функциональное диагностирование состояния уплотнительных элементов, что позволяет планировать их замену, избегая аварийного останова.

Благодаря специальному профилю теплопередающих трубок достигается не только опережающий рост коэффициентов теплоотдачи по сравнению с ростом гидравлического сопротивления, но и, на известных режимах, эффект самоочистки. Целесообразность опережающего роста тепловой эффективности очевидна, но и наличие сопутствующего эффекта самоочистки является весьма существенным фактором, т.к. в процессе эксплуатации требования к охлаждающей жидкости зачастую не выдерживаются, в результате чего на теплопередающих поверхностях накапливаются различные отложения, снижающие эффективность отбора тепла, что отрицательно сказывается как на работе механизма, охлаждаемого маслом, так и на потребителях вторичных энергоресурсов.

Но одними из наиболее существенных преимуществ аппаратов ТТАИ являются их незначительные по сравнению с аналогами масоо-габаритные характеристики, что достигается благодаря взаимовлиянию и взаимодополнению ряда вышеперечисленных технических особенностей.

К сожалению, применение серийно выпускаемых теплообменников ТТАИ для решения задачи отбора низкопотенциального тепла от вязкой масляно-воздушной смеси не могло дать необходимых результатов ввиду наличия возможности возникновения байпасных токов масла и обусловленного этим снижения тепловой эффективности аппарата. Это обусловило выполнение доработок, которые должны были решить задачу обеспечения практически чистого поперечного обтекания трубок пучка потоком охлаждаемого масла при сохранении гидравлического сопротивления масляной полости теплообменника в достаточно жестко, для вязких сред, ограниченных пределах. В качестве допустимой верхней границы сопротивления была принята величина 10 м.в.ст., что более соответствует аппаратам, работающим на невязких средах, однако большее значение гидравлического сопротивления способно сделать экономически нецелесообразным утилизацию сбросного тепла, т.к. рост сопротивления теплообменника ведет к росту мощности, расходуемой на привод масляного насоса.

В ходе доработки были приняты два новых принципиально важных решения:

Трубки трубного пучка было решено сгруппировать в центральной части корпуса, оставив свободными проходы для перетока масла из одного отсека в другой;

Корпус теплообменника решено было сделать составным из секций, длина которых равна расстоянию между перегородками межтрубного пространства, а сами перегородки выполнить с целиком замкнутой периферийной цилиндрической поверхностью, на которую опираются обжимаемые секциями корпуса эластичные уплотнительные прокладки.

Группировка теплопередающих трубок в центральной части (см. рис.1), с одной стороны, позволяет уменьшить гидравлическое сопротивление масляной полости охладителя за счет снижения скорости движения масла в одном из самых зауженных сечений, в котором к тому же осуществляется разворот потока на 180 о и, с другой стороны, исключает из процесса теплообмена (и тем самым снимает необходимость учета при выполнении расчетов) трубки, которые обтекались бы потоком масла под углом атаки, отличным от прямого, да к тому же еще меняющимся от ряда к ряду.

Представленный на рис.2 аппарат в ходе натурных испытаний на испытательном стенде НПАО «ВНИИкомпрессормаш» в составе компрессорной установки показал фактические результаты, приведенные в табл.1.

Таблица 1

Анализ этих результатов показывает, что модифицированный аппарат ТТАИ полностью обеспечивает требования по эффективному отбору тепла от высоковязкой масляно-воздушной смеси.

Однако очевидно, что технические преимущества модифицированного теплообменника ТТАИ при всей своей привлекательности не могут являться основной целью создания такого аппарата. Основная цель - это создание компактного (с целью обеспечения возможности размещения на объектах, где ранее не предполагалась установка соответствующего теплообменника) и относительно не дорогого аппарата (чтобы энергетический выигрыш от использования вторичных ресурсов не был нивелирован затратами на приобретение и установку теплообменника). Для анализа этих характеристик было проведено сравнение описанного теплообменного аппарата с аналогами. Для осуществления такого сравнения в табл.2 приведены весовые, а также ценовые характеристики трех вариантов:

Пластинчатого теплообменного аппарата, выпускаемого в Украине;

Кожухотрубного аппарата российского производства;

Рассматриваемого в настоящей статье теплообменного аппарата из семейства ТТАИ.

Таблица 2

Следует отметить, что приведенные в табл.2 аппараты сравниваются на идентичные теплотехнические условия, при этом необходимо иметь ввиду, что если по аппарату ТТАИ теплотехнические характеристики получены в ходе натурных испытаний, то по аппаратам других двух позиций приходится опираться на их расчетные характеристики, сообщенные производителями (как показывает опыт, фактические характеристики нередко уступают расчетным).

В настоящее время выполняются работы по созданию типоразмерного ряда модифицированных теплообменных аппаратов ТТАИ, предназначенных для отбора сбросного тепла от высоковязких охлаждающих жидкостей. Завершение этой работы устранит последнее объективное препятствие на пути широкого использования вторичных энергетических ресурсов в виде сбросного тепла высоковязких жидкостей, охлаждающих работающие машины и механизмы.

Руководительпроекта:

Смоленск -2007г.

1.Введение………………………………………………………..3

2.Структура АЭС и основные источники тепловой энергии…4

2.1.Реакторы типа РБМК-1000……………………………….....4

2.2. Реакторы типа ВВЭР-1000………………………………….5

2.3.Источники тепла для возможного дополнительного

преобразования энергии на АЭС………………………………..7

3.Теплоэнергетические преобразователи……………………….9

Известно, что в настоящее время разработаны достаточно эффективные полупроводниковые преобразователи теплоты в электроэнергию, использование которых на АЭС может улучшить показатели эффективности и безопасности станций. Особенный интерес, на наш взгляд, является выработка электрической энергии в аварийных режимах для поддержания работоспособности систем обеспечения безопасности АЭС. Дело в том, что тепловая энергия конструктивных элементов АЭС достаточно инерционна, т. е. даже при прекращении работы реактора температура его узлов и элементов меняется достаточно медленно во времени. Следовательно, преобразование накопленного тепла в электроэнергию может обеспечить электроснабжение как систем безопасности АЭС, так и других внутренних потребителей.

Целью проекта является определение технических возможностей утилизации потерь тепловой энергии на АЭС с помощью теплоэнергетических полупроводниковых преобразователей (теплоэлектрогенераторов).

2.Структура АЭС и основные источники тепловой энергии.

Основным структурным элементом АЭС является ядерный реактор – устройство, в котором осуществляется цепная ядерная реакция деления атомов урана и происходит передача энергии деления теплоносителю (как правило – воде). Основными типами ядерных реакторов в энергетике России являются водо-водяные энергетические реакторы (ВВЭР) и реакторы большой мощности канальные (РБМК). Удельная плотность теплового потока у реакторов ВВЭР доходит до 850 кВт/м2, у реакторов РБМК значительно меньше ввиду существенно больших размеров активной зоны.

2.1.Реакторы типа РБМК-1000

Реактор РБМК (реактор большой мощности канальный) получил своё название из-за своей большой мощности. Индекс 1000 означает, что эти реакторы имеют электрическую мощность 1000 МВт при тепловой мощности в 3200 МВт.

В реакторах типа РБМК теплоносителем является кипящая вода под большим давлением (около 60 атмосфер). Замедлителем в этих реакторах является графит. Основу конструкции таких реакторов составляют прямоугольные блоки из особо чистого графита. Размером 250Х250Х500 мм. В своей форме блоки имеют цилиндрические отверстия, вследствие чего при укладке их один на другой образуется вертикальный технологический канал, в который вставляется металлическая труба из сплава циркония. Внутри металлической трубы располагаются тепловыделяющие элементы (ТВЭЛы) и проходит охлаждающая вода. Вся графитовая кладка представляет собой цилиндр диаметром около 14 метров и высотой свыше 8 метров. Для герметизации реакторного пространства графитовая кладка с боков окружена сварным металлическим кожухом, а сверху и снизу массивными стальными плитами, которые обеспечивают не только крепление графита, но и являются частью биологической защиты реактора. Около 5 % мощности реактора выделяется в графите, поэтому для предотвращения окисления графита реакторное пространство заполняют медленно циркулирующей смесью гелия (He 85-90 %) и азота (N 10-15 %). В каждом технологическом канале, а их в реакторе РБМК-1000 всего 1661, находится по две тепловыделяющих сборки, соединённых последовательно, а поскольку каждый ТВЭЛ имеет длину 3,5 метра, высота активной зоны реактора составляет 7 метров. При этом общая загрузка урана в реактор составляет 200 тонн, если обогащение урана-235 имеет количество до 2,4 %.

К основным достоинствам канальных реакторах относили отсутствие трудоёмкого и дорогостоящего корпуса, возможность наращивания мощности путем пристройки новых графитовых блоков без изменения конструкций других узлов, а также возможность замены без остановки реактора отработавших тепловыделяющих элементов на новые.

Наряду с достоинствами реакторы РБМК имеют некоторые недостатки. Поскольку в реакторах РБМК охлаждающая вода непосредственно из активной зоны попадает в парогенератор и в турбину, то их называют одноконтурными. А в одноконтурных реакторах не исключена вероятность попадания радиоактивных веществ в воду, турбогенератор, а также другие объекты станции при аварийной разгерметизации трубопроводов. Кроме того, для реакторов РБМК ввиду большей длины активной зоны, большого объема графитовой кладки и некоторых других факторов характерна неравномерность распределения нейтронов по высоте и объему, а, следовательно, неравномерность тепловыделения. Это в совокупности с особенностями изменения замедляющих свойств паровоздушной смеси в процессе работы приводит к некоторой неустойчивости работы реакторов.

На рисунке 1 приведена принципиальная схема АЭС с реактором РБМК-1000.

По рисунку видно что вода нагретая в технологических каналах до температуры 300°С по главным трубопроводам направляется от реактора к теплообменнику, где отдаёт часть своего тепла турбине, которая в свою очередь вращает парогенератор. Далее охлажденный до температуры примерно 30°С пар направляется в конденсатор и снова поступает в реактор в виде воды.

2.2.Реакторы типа ВВЭР-1000

Реакторы типа ВВЭР (водо-водяные энергетические реакторы) имеют некоторые конструктивные отличия от реакторов РБМК-1000.

Реакторы ВВЭР также как и РБМК имеют электрическую мощность 1000 МВт, но тепловая их мощность немного меньше и составляет 3000 МВт. Реакторы ВВЭР довольно тяжелые и имею массу в несколько сотен тонн.

Реакторы ВВЭР также называют корпусными реакторами. В корпусных реакторах применяется, как правило, двух контурная система использования воды. Нагретая до высокой температуры в активной зоне реактора вода поступает в теплообменник, где оставляет свое тепло, отдавая его воде второго контура. Первый и второй контуры отделены друг от друга изоляционным слоем, поэтому вода из первого контура не может попасть во второй. В этом существенное преимущество двухконтурных реакторных систем с точки зрения радиационной безопасности. В легководяных реакторах замедлителем и теплоносителем служит обыкновенная вода.

Существует две основных конструкции реакторов: BWR(boiling water reactor) – реактор с кипящей водой и PWR(pressurized water reactor) – реактор с водой под давлением. Промышленные типы этих реакторов были созданы в США в 50-х годах.

BWR – реактор прямого цикла. Охлаждающая вода циркулирует в нем, проходя через активную зону реактора, и превращается в пар внутри корпуса давления реактора. Этот пар непосредственно приводит во вращение турбину электрогенератора. Конденсат после прохождения им деаэратора поступает обратно в корпус реактора. Вследствие прямого цикла происходит загрязнение турбины радиоактивными веществами, содержащимися в паре и воде первичного контура. Поэтому турбина заключена в герметичный кожух, протечки из которого направляются обратно в первичный контур. Турбинный зал является контролируемой зоной, и во время технического обслуживания в нем необходимо применять специальные меры предосторожности.

PWR – реактор непрямого цикла. Давление в корпусе реактора является достаточно высоким для предотвращения кипения воды. Эта вода при температуре примерно 320 градусов Цельсия циркулирует по замкнутому контуру, включающему парогенератор, вырабатывая во вторичном контуре пар, который приводит в действие турбину.

Реакторы ВВЭР постоянно развивают и усовершенствуют. Первый реактор ВВЭР имел мощность 210 МВт. За 20 лет электрическая мощность блока возросла до 1000 МВт; давление первого контура возросло с 10 МПа до 16 МПа, а давление пара в парогенераторах возросло с 2,3 до 6,4 МПа; удельная напряженность активной зоны возросла с 47 до 111 кВт/литр. У реактора ВВЭР есть некоторые апробированные общие решения.

ООО «ТМ МАШ» производит системы утилизации (когенерации) тепла дизель-генераторных установок (ДГУ, ДЭС), газопоршневых установок (ГПУ, ГПА, ГПГУ) и газотурбинных установок (ГТД). Система утилизации тепла для газовых или дизельных генераторных станций – комплекс тепломеханического оборудования и устройств, которые позволяют утилизировать тепловую энергию ряда ГПУ или ДГУ, объединять потоки теплоносителя в сборном тепловом пункте и выдавать тепло потребителю.

Фактическая оценка эффективности утилизации тепла: Расчет окупаемости СУТ

Основным элементом системы утилизации тепла (СУТ) является тепловой модуль (ТМ), также называемый блоком или модулем утилизации тепла (БУТ). Именно тепловой модуль утилизирует тепло от каждой электростанции, которое объединяется с теплом от других тепловых модулей и через сборный тепловой пункт выдается потребителю. Данная система и является системой утилизации тепла. Объединение СУТ с системой охлаждения ДГУ и ГПУ (радиаторы охлаждения, они же сухие градирни, насосы и прочая обвязка) дает законченную тепломеханическую систему объекта.

Примеры упрощенных тепловых схем:

ТМ позволяет в значительной степени повысить суммарный КПД — коэффициент полезного действия (коэффициент использования топлива) теплоэлектроагрегата, доведя его значение до 85-90%. Таким образом, основной задачей системы утилизации тепла является экономия затрат на выработку тепла, соответственно, внедрение СУТ в полной мере является энергосберегающей технологией. С примером расчета окупаемости системы утилизации тепла можно ознакомиться на этой странице .

Во время работы двигателя внутреннего сгорания (ДВС) тепловая энергия утилизируется в ТМ следующим образом:

  • Утилизатор тепла антифриза (УТА) снимает тепло антифриза двигателя – вместо охлаждения антифриза на радиаторе охлаждения (сухая градирня) антифриз отдает свою тепловую энергию на нагрев воды потребителя. УТА представляет собой теплообменник кожухотрубчатого или пластинчатого типа, работающий по схеме «вода/антифриз» либо «антифриз/антифриз» (смотря какой сетевой теплоноситель используется у заказчика).
  • Утилизатор тепла дымовых (отходящих) газов (УТГ) снимает тепло с уходящих выхлопных газов двигателя: температура уходящих дымовых газов на выходе из двигателя составляет порядка 450-550 °С, температура газов на выходе из УТГ составляет 120–180 °С. Данное понижение температуры позволяет обеспечить существенный нагрев воды потребителя. УТГ – кожухотрубчатый теплообменник, работающий по схеме «вода/дымовые газы» либо «антифриз/дымовые газы».

Общая величина утилизируемой тепловой энергии сопоставима с вырабатываемой электроэнергией – в среднем на 100% кВт полученной электроэнергии вырабатывается 110%-130% кВт тепла.

В случае, если генератором электрической энергии является турбинная установка, в состав теплового модуля входит только утилизатор тепла дымовых газов. Тепловая мощность УТГ определяется параметрами турбины, но обычно составляет от 120% до 145% от вырабатываемой электрической энергии.

Расчет требуемого расхода сетевого теплоносителя:

Исходные данные
Теповая мощность модуля, кВт
Температура жидкости на входе в ТМ, C
Температура жидкости на выходе в ТМ, C
Температурная дельта, С
Требуемый расход: кг/ч м3/ч л/с
Сетевой теплоноситель — вода
Сетевой теплоноситель — антифриз

Варианты исполнения

Утилизировать тепло можно как отдельно с контуров антифриза либо выхлопных газов, так и с обоих контуров одновременно. Таким образом, получаются следующие варианты исполнения тепловых модулей:

  • Тепловой модуль в полной заводской готовности (ТМ) . Состоит из двух утилизационных теплообменников, переключателя потока газов, байпасного трубопровода, трубопроводной обвязки, рамного основания, комплекта КИПиА, шкафа автоматического управления (ШАУ ТМ).
  • Тепловой модуль утилизации тепла выхлопных газов (ТМВГ) . Состоит из утилизатора тепла выхлопных газов (УТГ), переключателя потоков газа с электроприводом, рамного основания, байпасной линии газовыхлопа и комплекта КИПиА.
  • Тепловой модуль утилизации тепла антифриза (ТМВВ) . Включает в себя утилизатор тепла антифриза (УТА), трубопроводную обвязку, трехходовые клапаны и ШАУ ТМ (при необходимости). В тепловых модулях, утилизирующие тепло по обоим контурам, ТМВГ и ТМВВ могут располагаться как на едино раме, так и раздельно, например ТМВВ внутри контейнера, а ТМВГ на крыше, либо на разных этажах здания энергоцентра. При заказе ТМВГ либо ТМВВ в комплект поставки могут быть включены соответствующие усеченные шкафы управления.

Комплектация

Традиционно тепловой модуль в полной заводской готовности включает в себя:

  • Утилизатор тепла выхлопных газов (УТГ)
  • Утилизатор тепла антифриза (УТА)
  • Трубопроводную обвязку по линии антифриза и сетевой воды
  • Байпасный трубопровод с затворами поворотными

Дополнительно в комплект поставки блока утилизации тепла может входить:

  • Насосы прокачки антифриза и сетевой воды
  • Защитный кожух для установки ТМ на улице / крыше контейнера
  • Система утилизации низкопотенциального тепла
  • Сетевой теплообменник

Конструктивные особенности и преимущества наших ТМ

  • Теплообменные трубки из нержавеющей стали 12х18н10т увеличивают долговечность изделия
  • Жаротрубное исполнение котлов-утилизаторов позволяет легко очищать трубки от загрязнения, конструкция жаротрубного теплообменника более компактна.
  • Компенсатор на кожухе УТГ защищает теплообменник от повреждений в случае аварийного нарушения условий эксплуатации
  • Возможность изготовления утилизаторов выхлопных газов с пониженным уровнем аэродинамического сопротивления (до 2 кПа)
  • Кожухотрубное исполнение УТА облегчает его ремонт и очистку в условиях низкой транспортной доступности (нет необходимости заменять прокладки между пластинами)
  • На этапе согласования с заказчиком компоновки наших тепловых модулей мы согласовываем монтажные, присоединительные и габаритные параметры тепловых модулей, что обеспечивает удобных подвод сетевой воды, антифриза и дымовых газов
  • Тепловые модули изготавливаются на рабочее давление жидких сред – 0,6МПа.
  • Все тепловые модули в сборе, а также и по отдельным узлам проходят обязательные гидравлические испытания на нашем производстве. Испытательное давление – 0,8 МПа
  • Мы можем изготавливать модули на давление до 4 МПа
  • Помощь в проектировании и подборе смежных систем и оборудования
  • Гибкий подход к требованиям и пожеланиям заказчика

Система утилизация тепла «ТМ МАШ». Примеры:

ООО «ТМ МАШ» изготовило СУТ практически для всех ДГУ и ГПУ, которые представлены в России. Ниже приведены примеры различных вариантов построения когенерационных модулей:

  • Система утилизации тепла для ГПУ Caterpillar G3618B
    • Открытого исполнения (располагается внутри отапливаемого помещения);
    • Утилизируется вся тепловая мощность (и выхлоп, и охлаждающая жидкость);
    • Объект: тепличное хозяйство в Ленобласти;
  • Когенератор тепла для ГПУ Caterpillar G3412
    • Кожухного (капотного) исполнения (располагается на крыше контейнера);
    • Полный тепловой модуль;
    • Объект: промышленное производство недалеко от Магнитогорска;
  • Утилизатор тепла дымовых газов ДЭС Caterpillar D3516
    • Открытого исполнения для расположения в здании электростанции;
    • Теплосъем с выхлопа;
    • Объект: муниципальная дизельная теплоэлектростанция в пос. Тура (Красноярский край);
  • Тепловой модуль утилизации тепла антифриза для ДГУ на базе ДВС Caterpillar C18
    • Открытого исполнения для расположения в здании энергоцентра сбоку от ДГУ;
    • Утилизация тепла охлаждающей жидкости;
    • Объект: муниципальная дизельная теплоэлектростанция на о. Сахалин;
    • Особенность: утилизатор тепла антифриза построен на базе пластинчатого теплообменника;
  • Когенерационный модуль для газопоршневой установки Cummins 315GFBA
    • Открытого исполнения (в каркасе – для расположения внутри помещения на втором этаже);
    • Теплосъем только с отходящих дымовых газов;
    • Объект: физкультурно-оздоровительный комплекс СПб;
  • Утилизатор тепла ГПА Cummins 315GFBA
    • Открытого исполнения для расположения внутри помещения рядом с ГПУ;
    • Утилизируется тепло с обоих контуров (полный ТМ);
    • Объект: промышленное производство в г. Миасс;
  • Котел-утилизатор тепла ГПУ Cummins 1750N5C
    • Изготавливали только непосредственно котел-утилизатор (УТГ);
    • Утилизируется тепло дымовых газов;
    • Объект: котельная в г. Сочи;
  • Полные тепловые модули для дизель-генераторных установок Cummins KTA 50G3 и KTA 38G5
    • Открытого исполнения для расположения внутри помещения рядом с ДГУ;
    • Теплосъем с двух контуров (контур выхлопных газов и контур охлаждающей жидкости);
    • Объект: муниципальная ТЭС в Якутии (пос. Оленек);
    • Особенность: Утилизатор тепла дымовых газов водотрубного типа (стандартный котел-утилизатор производства ТМ МАШ имеет конфигурацию жаротрубного теплообменника), утилизатор тепла антифриза на базе пластинчатого теплообменника;
  • Утилизатор тепла дымовых газов ГПУ GE Jenbacher JMS 416
    • Открытого исполнения для расположения на опорах над существующим контейнером с ГПУ;
    • Теплосъем с выхлопа;
    • Объект: логистический терминал в Челябинской области;
    • Особенность: Тепловой модуль устанавливался на объекте с существующей блок-контейнерной газопоршневой установкой;
    • Открытого исполнения для расположения на крыше помещения над ГПУ;
    • Полная утилизация тепла;
    • Объект: гостиница и ТРК в Москве;
    • Особенность: ГПУ работает на сжиженном газе (СУГ – сжиженный пропан-бутан);
  • Когенерация тепла дымовых газов микротурбинной установки Capstone C1000
    • Открытого исполнения для расположения внутри помещения рядом с микротурбинным агрегатом;
    • Теплосъем с выхлопа (кроме выхлопных газов на турбинах и микротурбинах больше нигде теплосъем не осуществить);
    • Объект: торговый комплекс в Магнитогорске;
    • Особенность: Утилизатор тепла водотрубного типа (стандартный котел-утилизатор производства ТМ МАШ имеет конфигурацию жаротрубного теплообменника);
  • Блоки утилизации тепла для ГПУ Камаз
    • Тепловой модуль открытого исполнения на раме для установке в здании;
    • Полные тепловые модули;
    • Объект: котельная в г. Саратов;
  • Утилизатор тепла выхлопных газов и антифриза газопоршневых агрегатов на базе ДВС Daewoo Doosan
    • Открытого исполнения для расположения контейнерах с газопоршневыми агрегатами;
    • Полная утилизация тепла;
    • Объект: автомойка грузовых автомобилей в пос. Синявино (Ленобласть);
  • Блок утилизации тепла дымовых газов ДГУ УДМЗ 6ДМ-21ЭЛ-М (Уральский дизель-моторный завод)
    • Открытого исполнения для расположения на контейнере;
    • Теплосъем с выхлопа;
    • Объект: муниципальная ДЭС для крайнего севера;
  • Теплоутилизатор дымовых газов ГПУ Arrow (Китай)
    • Открытого исполнения для расположения рядом с ГПУ капотного исполнения;
    • Теплосъем с выхлопа;
    • Объект: таксопарк в г. Курган;