Зачем нужен омметр для электронных сигарет. Упрощенный авометр своими руками для начинающего радиолюбителя Основные правила безопасности

Домашний мастер при ремонте квартиры своими руками сталкивается с необходимостью подключения светильников, розеток и выключателей по разным схемам. Такая деятельность требует выполнения электрических измерений и знания основных правил безопасности при работе под напряжением.

Наши советы помогут вам оптимально выбрать мультиметр для этих целей и понять основные правила безопасной работы с ним как в бытовой электропроводке, так и для ремонта подключаемых к ней приборов.

В материале статьи сравниваются два типа устройств измерителей: стрелочных аналоговых и цифровых. Это позволит оценить различные технологии замеров, сравнить их возможности, сделать выбор подходящей конструкции.


Назначение

Составное слово мультиметр обозначает своей первой частью «мульти» - много функций, которые выполняет этой прибор, а второй «метр» – измерение электрических величин.


Он позволяет определять:

  • значение действующего напряжения;
  • силу протекающего тока;
  • электрическое сопротивление подключенной цепи;
  • некоторые другие параметры.

Следует учесть, что прибор может иметь другие названия:

  1. авометр, обозначающее сокращение от ампер, вольт, ом измерение;
  2. или тестер, присвоенное первым аналоговым моделям.

На техническом языке его называют прибор многофункциональный измерительный.

Принципы измерения электрических величин

Поясняющая картинка из интернета с человечками призвана объяснить взаимосвязь процессов, происходящих в электрике, которые позволяет анализировать мультиметры любой конструкции.

Напряжение источника в вольтах старается пропихнуть ток в амперах через оказываемое ему противодействие сопротивлением в омах. Для анализа этих трех задач в мультиметр включены 3 отдельных измерительных прибора:

  • амперметр;
  • вольтметр;
  • омметр.

Кратко рассмотрим их функции.

Как работает амперметр

За основу действия аналоговых приборов принята измерительная головка магнитоэлектрической системы.

При протекании через нее электрического тока поворачивается подвижная рамка с противодействующей пружиной и прикрепленной к ним стрелкой, указывающей на шкале его силу в микроамперах - тысячных долях ампера. На таком диапазоне протекают токи через измерительную головку.

Однако амперметр замеряет не доли ампера, а целые и даже значительно большие значения. Такие величины тока способны выжечь все токопроводящие магистрали головки. Чтобы этого не произошло, их ограничивают параллельным подключением калиброванного электрического сопротивления, называемого шунтом.

Принцип шунтирования дополнительным сопротивлением уменьшает величину протекающего через головку тока и делает его пропорциональным входному значению. За счет этого шкалу градуируют в амперах, а не в тысячных его долях.

В цифровых приборах используются датчики токи, которые работают по микропроцессорным технологиям.

Устройство вольтметра

Та же измерительная головка подключается последовательно к добавочным сопротивлениям - токоограничивающим резисторам. Шкала прибора градуируется в вольтах.


Переключатель режимов у амперметра и вольтметра позволяет расширять пределы измерения.

Цифровой вольтметр работает от датчика напряжения.

Конструкция омметра

Принцип замера сопротивления раскрыт в статье о .

Омметр также работает с помощью измерительной головки.

Для этого используется встроенный источник напряжения, который выдает строго эталонную величину. Ее при подготовке омметра к работе необходимо вручную откалибровать.

Замеряемое сопротивление подключается к гнездам прибора. Через него проходит ток, ограничивающийся в зависимости от номинала резистора. Он отклоняет стрелку омметра на величину, пропорциональную значению электрического сопротивления.

Шкала омметра просто градуируется в омах.

Цифровые приборы вычисляют значение сопротивления по результатам информации, получаемой от датчиков тока и напряжения, но работают также от встроенного источника питания. Ручная калибровка им не требуется.

Разновидности мультиметров

Аналоговые приборы

Рассмотрим на примере тестера Ц4324.


Сразу бросаются в глаза многофункциональная шкала в несколько рядов и переключатели режимов с большим рабочим диапазоном.

Заводская схема внутренних соединений представлена на фото ниже.

Более подробно назначение шкалы измерительной головки показано на картинке.

При каждом замере необходимо анализировать положение стрелки на определённом диапазоне, соответствующем роду току и проверяемому сигналу.

Положения центрального переключателя разбиты на три главных сектора (амперметра, вольтметра и омметра) выделенные красными стрелками. При работе следует определять не только диапазон измеряемой величины, но и форму сигнала.

Цифровые приборы

Внутренняя конструкция этого типа мультиметра намного сложнее, а внешние органы выполнены проще для пользователя. В качестве образца выберем одну из типовых моделей с минимальным количеством автоматических настроек.

Вместо стрелочного указателя и сложной шкалы работает дисплей, а положением центрального переключателя можно выбрать все режимы измерения в любом секторе.

Подключение измерительных проводов выполняется к двум гнездам из трех:

  • центральное - общее;
  • левое - используется для замера токов более 10 ампер;
  • правое - во всех остальных случаях.

Способы электрических замеров

Любой мультиметр сам ничего не измеряет. Он показывает только те величины, которые подготовил пользователь в созданном им режиме. Ошибки показаний чаще всего связаны с невнимательной работой человека.

Рассмотрим однотипные операции, которые необходимо выполнять на стрелочном и цифровом мультиметре.

Измерения тестером Ц4324

Замер напряжения

Выбираем соответствующий режим нажатием средней кнопки снизу и выставляем предел измерения больший, чем напряжение у замеряемой батарейки - 3 V.


Потребуется оценить полярность подключения проводов. Если пустить ток в обратном направлении через измерительную головку, то стрелка просто упрется в стопор слева от нуля. Замер не получится.

Для снятия отсчета необходимо выбрать правильно ту шкалу напряжения, на которой стоит знак постоянного тока. Следует учесть ее кратность на соответствующем положении переключателя.

Обращаем внимание, что подобная операция относится к опасной и требует повышенного внимания.


Нажимаем до фиксации правую кнопку снизу со значком «~». Выбираем центральным переключателем соответствующий режим вольтметра и на нем положение 300 V. Только после этого устанавливаем концы в контакты розетки.

Со шкалы снимаем показания 250 V. Методика пользования ею та же, как и в предыдущем случае.

Замер тока

Положение переключателей и работа со шкалой выполняется по предыдущей методике.


Пальчиковая батарейка на 1,5 V выдала на лампочку 6,3 V ток 142 мА.

Замер сопротивления

В этом режиме важно:

  • проверить выставление стрелки на ноль, используя регулятор натяжения пружины измерительной головки, расположенный под стрелкой;
  • установить калиброванную величину источника питания ручкой потенциометра «Установка 0», размещенного в самой нижней части на лицевой стороне;
  • обеспечить .

Для измерения потребуется нажать одновременно две левых кнопки и установить переключатель на значок омов. Отсчет показания по шкале Ω получился 1,5. Такое сопротивление у нити накаливания в холодном состоянии.

Режим измерения сопротивлений мультиметром создан для проверки резисторов и других элементов радиоэлектронных устройств. Он не предназначен для оценки качества изоляции диэлектрического слоя. Мощность источника питания недостаточна для подобного измерения.

Оценку сопротивления изоляции кабелей и проводов выполняют специальными приборами, питающимися от мощных источников: ручных генераторов или бытовой сети 220 либо встроенных преобразователей с комплектом батареек. Их называют мегаомметрами.

Три приведенных опыта с малогабаритной лампочкой накаливания и батарейкой позволяют показать, что мощность источника энергии и потребителя следует правильно подбирать по нагрузке и напряжению.

1,5 V у батарейки и 6,3 у лампочки - явное несоответствие. Источник работает в аварийном режиме и не справляется с задачей: нить еле-еле светится. Ему искусственно создан режим перегрузки.

Аналогичный случай может произойти и в бытовой сети 220, где , снимающий питание с оборудования с выдержкой времени.

Подключая любой потребитель в электрическую сеть всегда оценивайте его возможность надежной работы и способность защит устранять аварийные ситуации.

Измерения цифровым мультиметром

Замер напряжения

Работа с источниками постоянного тока

Потребуется только установить центральный переключатель в положение замера напряжения на соответствующем пределе (=2 V), вставить провода в гнезда прибора и подключить их к проверяемой батарейке. Результат сразу отображается на табло.

Если полярность подключения источника к мультиметру перепутана, то на табло отобразится знак минус. Значит замер надо повторить, перевернув провода на батарейке.

Этот прием используют для определения полярности источника.

Когда замер выполняется на большем пределе, то точность результата будет занижена. Необходимо соблюдать соответствие величин.

Работа с источниками переменного тока

Вначале переключатель режимов устанавливают в положение «~600 V», а затем проверяют напряжение в розетке.


У нас получился результат 231 вольт.

Замер тока

Мультиметр врезают в цепь тока, предварительно переключив его в режим амперметра и установив на соответствующую позицию измерений. Мы имеем показание 145 мА на пределе 200.


Знак минус перед значением тока свидетельствует о том, что полярность подключения проводов прибора в схему перепутана. Ток через него идет в обратном направлении.

Электрикам, часто сталкивающимися с измерениями, рекомендуем приобрести мультиметр с разъемным магнитопроводом трансформатора тока -клещами. Им удобно выполнять безразрывное подключение и быстрый замер.

Замер сопротивления

Центральный переключатель мультиметра установлен в положение 200 Ω, а результат 9,75 отображен на табло.


Таким же способом прибор работает на шкале kΩ. На приведенном фото даже завышен предел измерения сопротивления. На результате это особенно не сказывается, хоть и влияет.

Режим прозвонки

Цифровой мультиметр в отличие от аналогового стрелочного имеет такую дополнительную функцию. Она позволяет просто определять наличие электрического контакта внутри проверяемой цепи.

В замкнутой и разомкнутой схеме меняется индикация на табло, а у многих моделей приборов дополнительно появляется звуковой сигнал.

Режим прозвонки создан для анализа маленьких сопротивлений, характерных для цепей тока. Но им не стоит пользоваться в цепях напряжения. Особенно он удобен для проверки полупроводниковых элементов.

Еще одна полезная функция для радиолюбителей, называемая на их сленге «пищалкой». Мультиметр выдает высокочастотные сигналы, которые позволяют проверять тракты звуковых усилителей и различные каналы передатчиков или приемников.

У владельцев стрелочных приборов такой функции нет. Они вынуждены делать подобный генератор своими руками.

Проверка транзисторов

Еще одна полезная функция цифрового мультиметра, которая также встречается на более сложных конструкциях стрелочных моделей.

Для проверки биполярного транзистора достаточно правильно вставить его ножки в соответствующее гнездо, учитывающее структуру p-n-p или n-p-n полупроводникового перехода. Для этого создано четыре контактных отверстия, в которые устанавливают ножки за счет поворота корпуса в одну из сторон.

У исправного транзистора сразу высвечивается коэффициент усиления h21.


Эта же функция на стрелочных тестерах требует снятия показаний и выполнения математических расчетов.

Основные правила безопасности

Мультиметр создан для измерения электрических величин и позволяет работать под напряжением. Его корпус и провода выполнены с , так и по нормативам .

Качество защиты цифровых приборов выше, а их дизайн более продуман. Однако, даже при их пользовании следует быть внимательным и осторожным, соблюдать рекомендации производителя.

Любой цифровой мультиметр можно вывести из строя неправильным обращением при его несомненных преимуществах перед стрелочным прибором:

  • работе встроенных защит «от дурака», которые отключают схему от проникновения опасных токов, созданных при всех режимах измерения;
  • повышенной диэлектрической прочности изоляции.

Стрелочные старые тестеры требуют еще больше внимания: при неправильном подключении к цепям токам или напряжения, особенно в бытовой сети 220, элементы их внутренней схемы выгорают. Если калибровочные резисторы еще можно заменить, то с контактами переключателей и кнопок ситуация ремонта усугубляется.

Но чаще всего у них выходит из строя токопроводящая пружинка или обмотка измерительной головки. В этой ситуации ремонт обходится дороже покупки нового цифрового мультиметра.

На чтение 6 мин.

Сегодня существует целый набор дополнительных инструментов для электронных сигарет, которые не являются обязательными, но делают использование любимого электродевайса значительно проще и эффективнее.

Одним из таких вспомогательных и очень полезных инструментов для парильщика является омметр. Его наличие особенно необходимо, если Вы являетесь поклонником клаудчейзинга. И здесь возникает резонный вопрос: а что же представляет собой клаудчейзинг?

Это не что иное, как стиль парения электродевайсов, при котором целью является образовать как можно большее количество пара изо рта.

Но как же добиться такого обильного количества пара? Какие для этого понадобятся сигареты? Вот с этим мы и попробуем разобраться, а заодно и выясним предназначение омметра для электронных сигарет.

Комплект необходимых инструментов

Клаудчейзинг предполагает использование мехмода, который является разновидностью электронной сигареты.

Сразу хочется отметить, что парение таким способом требует наличия определенного опыта. Новичкам лучше воздержаться от такого способа курения.

Стоит заметить, что владельцам регулируемых бокс-модов отдельный омметр не нужен, так как он уже встроен в электронную плату девайса.

Рассмотрим более подробно весь перечень инструментов и вспомогательных устройств для обильного парения.

И, наконец – то, узнаем, зачем парильщику нужен омметр для электронного гаджета.

Итак, рассмотрим список инструментов, которые нам понадобятся.

Последние штрихи перед намоткой

Уровень заряда аккумулятора 18650 обязательно должен быть полным. Дрипку накручиваем на мехмод, ставим блокировку кнопки и начинаем наматывание.

Как мы уже говорили раньше, чем ниже показатели сопротивления, тем большее количества пара образуется.

Уровень сопротивления намотки должен быть не более, чем 0.10 Ом, иначе количество пара вас не впечатлит. Пробовать намотки с сопротивлением ниже чем 0.03 Ом следует только с полным понимаем, так как такое низкое сопротивление может быть опасно.

Читайте также: Есть ли вред от никотина в электронных сигаретах

Вот здесь – то нам и пригодится такое волшебное и незаменимое устройство, как омметр для электронных сигарет .

Узнавайте с его помощью уровень сопротивления, чтобы сделать процесс парения безопасным для собственного здоровья.

Виды простых намоток

Рассмотрим способы наматывания, с которыми сможет справиться даже новичок.

Двойная параллель

Намотка осуществляется проволокой диаметром 0,5. Мотаем две спирали. В отличие от обычного микрокоила, вам понадобится приложить друг к другу два отрезка проволоки параллельно, и только после этого начать делать витки на оправке.

Намотку выполняют оправкой 2,5 мм, делают 5 витков на каждой из спиралей.

В конечном итоге Вы должны получить около 0.11 Ом, чего хватит для неплохого количества пара.

Намотка 0.8ым канталом

Этот метод годится только для мехмодов и только для качественных высокотоковых аккумуляторов. Берёте кусок проволоки 0.8 кантала и делаете из него две спирали по 4 витка на оправку 3мм. У вас получится сопротивление около 0.08 Ом и большое количество пара вам обеспечено. Сложность возникает при сгибании такой толстой спирали, так как она очень тугая и вам понадобится приложить немало усилий. Узнать точное сопротивление вы сможете только после намотки и прожига спиралей.

Как видите, омметр является очень важным устройством для обеспечения безопасного парения.

ИСТОЧНИК: Журнал Радио №1 1998 г.

В. СЫЧЕВ г. Москва

При изготовлении электроизмерительных приборов могут возникнуть некоторые трудности, связанные с изготовлением приборных шунтов. Эти шунты обычно низкоомные. и подобрать их нужно тщательно, так как от этого зависит точность измерителя. Для этого предлагается изготовить простой электронный омметр, которым можно измерить малые сопротивления при линейной шкале на четырех пределах: 10, 25.100 и 250 Ом.

Схема прибора изображена на рисунке. Он состоит из источника стабилизированного тока на транзисторе VT1. режим работы которого задают стабилитрон VD1 и резисторы R3. R4, R5, и вольтметра (микроамперметр РА1 и резисторы R1, R2).

Коллекторный ток транзистора VT1 создает на резисторе Rx напряжение, пропорциональное его сопротивлению. Поэтому, если откалибровать (т.е. установить стрелочный указатель микроамперметра на последнее деление шкалы) измерительную часть по определенному образцовому резистору Roop. то измеряемое сопротивление можно будет считывать по линейной шкале измерительного прибора.

Работа с прибором сводится к следующему. К зажимам "Rx" присоединяют проверяемый резистор (например, изготавливаемый шунт), а к зажимам "Ro6p" -образцовый резистор, соответствующий выбранному пределу измерения. Переключатель SA2 переводят на соответствующий предел измерения, а переключатель SA1 - в положение "К" (калибровка). После подачи напряжения питания нажатием на кнопку SB1 подстроечным резистором R4 устанавливают стрелочный указатель на последнее деление шкалы. Затем переключатель SA1 переводят в положение "И" (измерение) и измеряют сопротивление Rx. Точность измерения в основном будет зависеть от точности образцовых резисторов.

Если во вспомогательном приборе использовать источник питания с напряжением 8...9 В или менее чувствительную головку, то стабилитрон Д814А нужно заменить на КС139А или КС147А, сопротивление резистора R5 уменьшить до 100 Ом. a R4 - до 470 - 680 Ом. Кроме того, если сопротивление образцового резистора не соответствует точно необходимому пределу измерения, то калибровку измерителя допустимо произвести с установкой показания, соответствующего номинальному значению этого резистора, если оно составляет не менее 80% от предела.

В приборе могут быть применены образцовые резисторы типов МТ, БЛП, С2-29В. С2-36. С2-14: резисторы МЛТ (R1. R3. R4. R5): резистор R2 типов СПО-0.5, CП3-4б или аналогичный; транзисторы серий КТ814. КТ816 с коэффициентом передачи тока базы более 50. В качестве микроамперметра РА1 применима измерительная головка, которая будет установлена в изготавливаемый прибор (например, 50 или 250 мкА). Переключатели SA1 и SA2 - тумблеры типа ТВ2-1. Вообще говоря, переключатель SA1 можно и исключить, оставив одну пару зажимов, к которым сначала подключить резистор Rocp. а после калибровки - резистор Rx.

В случае применения в приборе более распространенных транзисторов структуры п-р-п следует изменить полярность включения источника питания стабили трона и микроамперметра.

Самодельные измерительные приборы

Журнал Радио 1 номер 1998 год
В Сычев. Москва

При изготовлении электроизмерительных приборов могут возникнуть некоторые трудности, связанные с изготовлением приборных шунтов. Эти шунты обычно низкоомные. и подобрать их нужно тщательно, так как от этого зависит точность измерителя. Для этого предлагается изготовить простой электронный омметр, которым можно измерить малые сопротивления при линейной шкале на четырех пределах: 10, 25.100 и 250 Ом.

Схема прибора

Схема прибора изображена на рисунке. Он состоит из источника стабилизированного тока на транзисторе VT1. режим работы которого задают стабилитрон VD1 и резисторы R3. R4, R5, и вольтметра (микроамперметр РА1 и резисторы R1, R2).

Коллекторный ток транзистора VT1 создает на резисторе Rx напряжение, пропорциональное его сопротивлению. Поэтому, если откалибровать (т.е. установить стрелочный указатель микроамперметра на последнее деление шкалы) измерительную часть по определенному образцовому резистору Roop. то измеряемое сопротивление можно будет считывать по линейной шкале измерительного прибора.

Работа с прибором сводится к следующему. К зажимам "Rx" присоединяют проверяемый резистор (например, изготавливаемый шунт), а к зажимам "Ro6p" -образцовый резистор, соответствующий выбранному пределу измерения. Переключатель SA2 переводят на соответствующий предел измерения, а переключатель SA1 - в положение "К" (калибровка). После подачи напряжения питания нажатием на кнопку SB1 подстроечным резистором R4 устанавливают стрелочный указатель на последнее деление шкалы. Затем переключатель SA1 переводят в положение "И" (измерение) и измеряют сопротивление Rx. Точность измерения в основном будет зависеть от точности образцовых резисторов.

Если во вспомогательном приборе использовать источник питания с напряжением 8...9 В или менее чувствительную головку, то стабилитрон Д814А нужно заменить на КС139А или КС147А, сопротивление резистора R5 уменьшить до 100 Ом. a R4 - до 470 - 680 Ом. Кроме того, если сопротивление образцового резистора не соответствует точно необходимому пределу измерения, то калибровку измерителя допустимо произвести с установкой показания, соответствующего номинальному значению этого резистора, если оно составляет не менее 80% от предела.

В приборе могут быть применены образцовые резисторы типов МТ, БЛП, С2-29В. С2-36. С2-14: резисторы МЛТ (R1. R3. R4. R5): резистор R2 типов СПО-0.5, CП3-4б или аналогичный; транзисторы серий КТ814. КТ816 с коэффициентом передачи тока базы более 50. В качестве микроамперметра РА1 применима измерительная головка, которая будет установлена в изготавливаемый прибор (например, 50 или 250 мкА). Переключатели SA1 и SA2 - тумблеры типа ТВ2-1. Вообще говоря, переключатель SA1 можно и исключить, оставив одну пару зажимов, к которым сначала подключить резистор Rocp. а после калибровки - резистор Rx.

В случае применения в приборе более распространенных транзисторов структуры п-р-п следует изменить полярность включения источника питания стабили трона и микроамперметра.

Омметр, который мы предлагаем построить радиолюбителям, отличается от большинства приборов такого рода тем, что имеет линейную шкалу. Этим омметром и пользоваться удобней, и налаживать его проще.

ОММЕТР С ЛИНЕЙНОЙ ШКАЛОЙ

Почему шкала омметра большинства измерительных приборов не линейная? Дело в том, что измеряемая цепь в таких приборах является частью делителя напряжения или плечом моста (при мостовой "схеме измерения) и ток через нее непостоянен - он зависит от сопротивления цепи. Причем зависимость эта нелинейная, что и определяет характер шкалы отсчета стрелочного индикатора прибора.

Другое дело, если через измеряемую цепь пропускать строго постоянный (по значению) ток и измерять падение напряжения на ней. Тогда согласно закону Ома падение напряжения будет прямо пропорционально сопротивлению цепи, а значит, шкала индикатора (в данном случае вочьтмет-ра) будет линейной.

Прежде чем рассказать о практической схеме омметра с линейной шкалой, познакомимся с его упрощенной схемой, приведенной на рисунке 1. На транзисторе Т собран стабилизатор тока. Поскольку напряжение на базу транзистора снимается с кремниевого стабилитрона Д, ток в цепи эмиттера будет стабилен и зависеть только от -сопротивления резистора R3. Стабильным будет и ток коллектора, протекающий через измеряемый резистор Rx с неизвестным сопротивлением. Поэтому

вольтметр ИП будет измерять напряжение, прямо пропорциональное сопротивлению подключаемых резисторов.

Выбор резистора Ra определяется возможными изменениями тока базы транзистора при установке различного тока эмиттера. А задаваемый ток эмиттера, в свою очередь, определяется выбранным пределом измерения. При малых значениях измеряемого сопротивления ток эмиттера выбирают большим, но не превышающим значения предельно допустимого тока для данного транзистора. Нижний предел тока эмиттера зависит от возможного минимального обратного тока коллектора (I к. о.) данного транзистора. Для измерения резисторов с большим сопротив тением нужио выбирать транзисторы с возможно ма лым значением тока I к. о. Кроме того, для предупреждения шунтирующего влияния вольтметра ИП его входное сопротивление должно быть значительно больше (по крайней мере, на порядок) предельного значения измеряемого сопротивления. Исходя из этих соображений и была выбрана практическая схема (рис. 2) омметра с линейной шкалой.

В качестве стабилизатора тока применен транзистор структуры п-р-п с обратным током коллектора не более 1 мкА. Значение