Что такое трансивер? Что нового в конструкции.

Простейшие QRP трансивера

Схема QRP CW/DSB трансивера от PA3ANG на TCA440 (К174ХА2) Выходная мощность трансивера около 3 вт

Фактический размер печатной платы 89 на 46 мм

QRP CW трансивер от DG0SA

Радиохобби 2006 №2


CW QRPP Эльфа-2

Чувствительность-80 мкв выходная мощность-0,5 вт

UU80b от G3XBM

Еще одна версия

ТВОЙ ПЕРВЫЙ ПЕРЕДАТЧИК

Я.Лаповок (UA1FA)

Диапазон рабочих частот-160м (зависит от применяемого кварца), максимальный ток-400ма, выходная мощность-2...3вт

Литература: журнал "Радио" 2002 №8

CW трансивер прямого преобразования

Этот трансивер предназначен для работы телеграфом в любительском диапазоне 80 м. Генератор с кварцевой стабилизацией частоты, собранный на полевом транзисторе VT5 использован как в приемном, так и в передающем тракте и выполняет соответственно функции либо гетеродина, либо задающего генератора. Кварцевый резонатор подключают к розетке XS4. В небольших пределах (зависящих от параметров резонатора и элементов контура L1C12) рабочую частоту генератора можно изменять конденсатором переменной емкости С12. Обычно не составляет труда «сдвинуть» частоту генератора на 2-3 кГц.

С контура L2C13 через катушку связи L3 радиочастотное напряжение поступает в цепь базы транзистора выходного каскада VT4. Манипуляцию осуществляют в эмиттерной цепи этого транзистора ключом, подсоединяемым к розетке XS3. Выходной контур L5C9 согласован с коллекторной цепью транзистора VT4 и нагрузкой (антенной) катушками связи L4 и L6. Транзистор VT4 работает без начального смещения (в режиме С).

Приемный тракт трансивера собран по схеме прямого преобразования частоты. При ненажатом ключе диод VD1 открыт током, определяемым резисторами R9 и R8. Сигнал с антенны, поступивший через катушку связи L6 в контур L5C9, беспрепятственно проходит в цепь первого затвора полевого транзистора VT3, работающего как детектор смесительного типа. На второй затвор через конденсатор СИ подается радиочастотное напряжение кварцевого генератора. Напряжение смещения на этом затворе определяет делитель, образованный резисторами R10 и R11. Переменный резистор R8 выполняет функции регулятора уровня сигнала в приемном тракте.

Напряжение звуковой частоты, выделившееся на первичной обмотке трансформатора Т1, усиливается двухкаскадным усилителем на транзисторах VTI и VT2. Нагрузка этого усилителя - головные телефоны с сопротивлением излучателей 1600-2200 Ом, подключаемые к розетке XS1. Для увеличения громкости приема сигналов радиостанций излучатели включают параллельно.

Катушки трансивера LI-L6 намотаны на каркасах диаметром 6-8 мм (от телевизионных приемников) с подстроечниками из карбонильного железа. Обмотки выполнены медным проводом диаметром 0,3 мм в эмалевой изоляции. Число витков катушки L1 - 60, L2 и L5 - по 50, остальных - по 12 витков. Катушки связи (L3, L4 и L6) намотаны поверх соответствующих контурных, намотка - рядовая, сплошная.

В качестве трансформатора Т1 использован согласующий трансформатор от транзисторного радиовещательного приемника. Конденсатор С12 должен иметь максимальную емкость примерно 400 пФ и возможно меньшую начальную емкость.

Налаживание трансивера начинают с передающего тракта. К гнезду XS2 подключают эквивалент антенны - резистор сопротивлением 75 или 50 Ом и мощностью рассеивания 1 Вт. Временно замкнув накоротко катушку L1 и установив ротор конденсатора С12 в положение, соответствующее максимальной емкости, подстроенным конденсатором С13 добиваются максимального тока эмиттера транзистора VT4 (контрольный миллиамперметр с током полного отклонения 200-250 мА можно подключить, например, к розетке XS3). Затем подстроечным конденсатором С9 добиваются максимального радиочастотного напряжения на эквиваленте антенны. Ток, потребляемый при этом выходным каскадом, должен быть около 150 мА. Если выходная мощность передатчика будет заметно меньше 0,7 Вт, следует подобрать числа витков катушек связи (в первую очередь L4 и L6).

При налаживании приемника имеет смысл подобрать резистор R10 и конденсатор СИ по максимальной чувствительности приемного тракта. В усилителе звуковой частоты подбирают резисторы R2 и R3 по напряжениям на коллекторах транзисторов VT1 и VT2 (соответственно 2-3 и 5-7 В). Транзисторы ВС109 можно заменить на КТ342, КТ3102 и им аналогичные; 40673 - на КП350; BF245 - на КПЗ0З или КП302; 2N2218 - на КТ928; диод 1N4148 - на КД503 и ему аналогичные.

QRP CW трансивер на 7 мгц

Выходная мощность 500 мвт



Трансивер "Полевик-80"

Технические характеристики трансивера «Полевик-80»:

Напряжение питания 10 – 14 В

Потребляемый ток (при 12В)

– в режиме приема 15-20 мА

– в режиме передачи 0.5 – 0.7 А*

Диапазон частот: 3500 – 3580 кГц**

Чувствительность (при 10 дБ С/Ш): около 10 мкВ

Выходная мощность: 3 Вт*

* – зависит от цепи согласования с антенной;

** – зависит от перекрытия частот гетеродином.

При необходимости этот трансивер можно переделать и на другие диапазоны. На ВЧ диапазонах следует обратить особое внимание на качество и стабильность гетеродина и смесителя

В режиме приема сигнал с антенны через ФНЧ на L2, L3, C3, C6, C8, C9 поступает на смеситель на полевых транзисторах (отсюда и название трансивера) VT3, VT5. Переходы исток-сток транзисторов включены параллельно, а на затворы через трансформатор T1 подается противофазное напряжение гетеродина. За один

период гетеродинного напряжения проводимость транзисторов изменяется дважды. При этом происходит преобразование сигнала: F = Fsig ± 2Fosc.

Гетеродин работает на частоте в 2 раза ниже принимаемой. Как и в случае со смесителями на встречно-параллельных диодах, это выгодно по нескольким причинам: гетеродин с низкой рабочей частотой имеет меньший «уход» частоты, а его гармоники подавляются входным фильтром. Низкочастотный ФНЧ L4, C11, C12 выделяет звуковой сигнал, который усиливается двухкаскадным УНЧ на транзисторах с высоким коэффициентом передачи тока. В качестве наушников можно использовать высокоомные телефоны или низкоомную гарнитуру с согласующим трансформатором (рис. 1).

Гетеродин выполнен по классической схеме Хартли на транзисторе VT1 и особенностей не имеет. Буферный каскад (VT2) служит для развязки гетеродина.

Выбор для смесителя мощных полевых транзисторов RD15HVF1,

предназначенных для ВЧ и СВЧ усилителей, продиктован исключительно их хорошими параметрами и доступностью. Имея малую емкость затвора, они незначительно нагружают гетеродин, что повышает его стабильность. Переходы транзисторов RD14HVF1 начинают проводить при напряжении на затвор-исток +3…4 В. В режиме приема истоки транзисторов VT3, VT5 по постоянному току отключены от «земли» через закрытый переход управляющего транзистора VT4, но замкнуты по переменному току через конденсатор C11. При этом полевые транзисторы VT3, VT5 ведут себя как управляемые сопротивления и обладают

высокой линейностью.

В режиме передачи при нажатом ключе S1 открывается управляющий транзистор VT4, который замыкает на «землю»

низкочастотный тракт трансивера и пропускает через себя истоковые токи смесителя значительной величины. Через

трансформатор T2 на смеситель, который теперь играет роль усилителя-умножителя, поступает напряжение питания. А через конденсатор C9 сигнал передатчика поступает на согласующий

чтобы согласовать низкое выходное сопротивление полевых транзисторов с сопротивлением антенны. При монтаже ВЧ транзисторов RD15HVF1 следует минимизировать длину соединительных проводников, предусмотреть экранирование. Это поможет избежать самовозбуждения на ВЧ, а также снизит уровень побочных излучений. Транзисторы VT1, VT2 можно заменить другими маломощными полевыми ВЧ транзисторами с небольшим напряжением отсечки. Вместо ВЧ транзисторов VT3 и VT5 можно использовать другие полевые транзисторы с как можно меньшей

емкостью затвора, например BS170. Если применить широко распространенный «полевик» IRF510, то из-за значительной емкости затвора, буферный каскад гетеродина на VT2 будет сильно нагружен, и напряжения на трансформаторе T1 окажется недостаточно для работы смесителя. В этом случае придется добавить в гетеродин еще один каскад усиления. Вместо управляющего транзистора VT4 можно использовать мощный

переключающий «полевик» другого типа, например IRF630. Транзисторы УНЧ VT6, VT7 следует подобрать по максимуму коэффициента передачи тока h21э (он должен быть не менее 800).

Катушки индуктивности можно намотать на имеющихся каркасах диаметром не менее 6 мм. Конкретные значения индуктивностей подбираются при согласовании ВЧ цепи. Трансформаторы T1 и T2 наматывают на тороидальных сердечниках с проницаемостью 1000…2000 сложенным втрое толстым проводом в изоляции

(например, годится жила от кабеля UTP, применяемого для прокладки компьютерных сетей). Обмотка содержит 5…8 витков. Средний вывод симметричной обмотки трансформатора T1 получается соединением начала одной обмотки с концом другой. Все три обмотки трансформатора T2 соединяются аналогично. В качестве согласующего НЧ трансформатора можно

использовать трансформатор из «радиоточки» или от старого радиоприемника.

Питать трансивер лучше от аккумулятора, тогда возможный фон переменного тока не будет мешать приему.

Наладка трансивера сводится к установке режима работы УНЧ резистором R7, при этом напряжение на коллекторе VT7 должно быть близким к половине напряжения питания. Подстройкой сердечника катушки L1 «вгоняют» гетеродин в нужный диапазон. При нормальной работе, ВЧ напряжение на затворах VT3, VT5

должно достигать 4…5 В на пиках. Подключив вместо антенны ее эквивалент, и нажав на ключ, подстраивают выходной ФНЧ, добиваясь максимальной мощности на эквиваленте антенны Действующее значение напряжения (Vrms) равно 12.1 В, что при

нагрузке 50 Ом соответствует почти трем ваттам (3 Вт). Улучшив согласование можно повысить КПД и даже получить QRP

трансивер! (два транзистора RD15HVF1 способны «отдать» в

антенну до 36 Вт!). В процессе разработки и наладки этого трансивера у меня случился один веселый казус: когда еще на макете не был спаян УНЧ, я подключил к ФНЧ L4, C11, C12

21наушники, а к антенному разъему – укороченный вертикал на 80м, и глубокой ночью, когда все спят, в тихой комнате из наушников услышал сигналы любительских телеграфных радиостанций! Если прислушаться, можно было распознать и далекие грозовые разряды, и очень слабенький фоновый шум

помех. И все это даже без УНЧ! Получилось этакое «детекторное прямое преобразование». Дмитрий Горох UR4MCK

С распространением сети интернет, радиолюбительство, как ни жаль, как то постепенно стало угасать. Куда подевалась армия радиохулиганов, легионы «охотников на лис» с пеленгаторами и прочие их коллеги… Канули, остались крохи. Отсутствует массовая агитация на государственном уровне и вообще, изменилась система ценностей - молодые люди, чаще предпочитают выбирать себе другие развлечения. Конечно, азбука Морзе, в нынешний цифровой век используется не часто и радиосвязь в ее исходном виде все более теряет свои позиции. Однако радиолюбительство как хобби, это помесь этакой романтики странствий с изрядными навыками и знаниями. И возможность мозгами поскрипеть, и руки приложить, и душе порадоваться.

И всё же братьев я не посрамил,
но воплотил их сил соединенье:
я, как моряк, стихию бороздил
и, как игрок, молился о везенье.

М. К. Щербаков «Песня пажа»

Однако к делу. Итак.

При выборе конструкции для повторения, было несколько требований, вытекающих из моих начальных знаний в области конструирования ВЧ аппаратуры – максимально подробное описание, особенно в смысле настройки, отсутствие необходимости в специальных ВЧ измерительных приборах, доступная элементная база. Выбор пал на трансивер прямого преобразования Виктора Тимофеевича Полякова.

Трансивер – связная аппаратура, радиостанция. Приемник и передатчик в одном флаконе, причём часть каскадов у них общая.

SSB трансивер начального уровня, однодиапазонный, на диапазон 160м, прямое преобразование, ламповый выходной каскад, мощностью 5 Вт. Есть встроенное согласующее устройство для работы с антеннами различных волновых сопротивлений.

SSB - однополосная модуляция (Амплитудная модуляция с одной боковой полосой, от английского Single-sideband modulation, SSB) - разновидность амплитудной модуляции (AM), широко применяемая в приемо-передающей аппаратуре для эффективного использования спектра канала и мощности передающей радиоаппаратуры.

Принцип прямого преобразования для получения однополосного сигнала, позволяет кроме прочего, обойтись без специфических радиоэлементов присущих супергетеродинной схеме – электромеханических или кварцевых фильтров. Диапазон 160м, на который рассчитан трансивер, несложно изменить на диапазон 80м или 40м перенастроив колебательные контура. Выходной каскад на радиолампе, не содержит дорогих и редких ВЧ транзисторов, не привередлив к нагрузке и не склонен к самовозбуждению.

Взглянем на принципиальную схему устройства.

Подробный анализ схемы можно найти в книге автора , там же есть авторская печатная плата, компоновка трансивера и эскиз корпуса.
По сравнению с авторской конструкцией, в свое исполнение были внесены следующие изменения. Прежде всего - компоновка.

Вариант трансивера рассчитанный для работы на самом низкочастотном любительском диапазоне, вполне допускает «низкочастотную» компоновку. В собственном исполнении, были использованы решения, более применимы для ВЧ аппаратуры, в частности – каждый логически законченный узел, был расположен в отдельном экранированном модуле. Кроме прочего, это позволяет значительно проще совершенствовать устройство. Ну и воодушевляла возможность несложной перенастройки на 80, или даже 40м диапазоны. Там такая компоновка будет более уместна.

Тумблер «Прием-передача», заменен несколькими реле. Отчасти из-за желания управлять этими режимами с выносной кнопки на подошвочке микрофона, отчасти более правильной разводкой сигнальных цепей – их теперь не требовалось тащить издалека к тумблеру на передней панели (каждое реле находилось на месте переключения).

В конструкцию трансивера введен вереньер с большим замедлением и , это позволяет существенно удобнее настраиваться на нужную станцию.

Что было использовано.

Инструменты.
Паяльник с принадлежностями, инструмент для радиомонтажа и мелкий слесарный. Ножницы по металлу. Простой столярный инструмент. Пользовался фрезерной машинкой. Пригодились вытяжные заклепки со специальными клещами для их установки. Нечто для сверления, в том числе и отверстий на печатной плате (~0,8мм), можно изловчиться одним шуруповертом – платки специфические, отверстий немного. Гравер с принадлежностями, пистолет для термоклея. Хорошо если есть под рукой компьютер с принтером.

Материалы.
Кроме радиоэлементов - монтажный провод, оцинкованная сталь, кусочек органического стекла, фольгированный материал и химикаты для изготовления печатных плат, сопутствующие мелочи. Нетолстая фанера для корпуса, мелкие гвоздики, столярный клей, много шкурки, краска, лак. Чуток монтажной пены, нетолстый плотный пенопласт – «Пеноплэкс» толщиной 20мм - для термоизоляции некоторых каскадов.

Прежде всего, в Автокаде, была прорисована компоновка, как всего аппарата, так и каждого модуля.

Были изготовлены сами модули – печатные платы, «гнушечки» корпусов модулей из оцинкованной стали. Собраны платы, намотаны и установлены контурные катушки, платы впаяны в индивидуальные кожухи-экраны.

Конденсатор переменной емкости для гетеродина – с удаленной каждой второй пластиной. Пришлось разбирать и отпаивать блоки статора, потом все ставить на место.

Из 8 мм фанеры изготовлен корпус, после подгонки проемов и отверстий, коробка ошкурена и покрыта двумя слоями серой краски. Изнутри коробка отделана той же оцинкованной сталью и начата окончательная установка элементов, и модулей.

Галетный переключатель и переменный конденсатор согласующего устройства расположены около антенного разъема, это позволяет максимально укоротить соединяющие провода. Для управления ими с передней панели, применены удлинители их валов из 6мм резьбовой шпильки и соединительных гаек со стопорами.

Ось вереньера настройки изготовлена из вала от разбитого струйного принтера, на этой же оси был подтормаживающий узел, который тоже пригодился. Проточка удерживающая тросик вереньера сделана при помощи гравера.

Специальный шкив, сам тросик и обеспечивающая натяг пружинка, взяты от лампового радиоприемника.

Ручка настройки сделана из двух больших шестеренок от того же принтера. Пространство между ними заполнено термоклеем.

Стенки модуля гетеродина отделаны слоем монтажной пены, это позволяет уменьшить «уход частоты» из за нагрева при настройке на станцию.

Модуль телефонного и микрофонного усилителя вынесены на заднюю стенку корпуса, для его (модуля) защиты от механических повреждений, на боковых стенках корпуса сделаны выпуски.

Настройка гетеродина трансивера. Для нее была изготовлена простейшая ВЧ приставка к мультиметру, позволяющая оценивать уровень ВЧ напряжения, например .

Первоначально, решено было изменить схему выходного каскада передатчика на полупроводниковую, с питанием от тех же 12 В. На фото выше, не до конца собран именно он – миллиамперметр на больший ток, дополнительная обмотка на катушке П-контура, только низковольтное питание.

Схема изменений. Выходная мощность около 0,5 Вт.

В дальнейшем, решено было все же вернуться к оригиналу. Пришлось заменить миллиамперметр на более чувствительный, добавить недостающие элементы, изменить блок питания.

Модуль усилителя мощности, теплоизолирован от остальных элементов конструкции, так как является источником большого количества тепла. Организована его естественная вентиляция – сделано поле отверстий в подвал корпуса и на крышке над модулем.

Подвал корпуса, также содержит ряд блоков и модулей.

Схема трансивера имеет простейшие решения отдельных узлов и не блистает характеристиками, однако, существует целый ряд улучшений и доработок, направленных как на улучшение ТТХ, так и на повышение удобства при работе. Это введение переключения боковых полос сигнала, автоматической регулировки усиления, введение телеграфного режима при передаче. Подавление нерабочей боковой полосы, можно также, несколько увеличить, уменьшив разброс характеристик диодов смесителя, например, применив вместо диодов V14…V17 диодную сборку КДС 523В. Улучшение отдельных узлов может быть выполнено по схемам из . Стоит также обратить внимание на решения . Примененная компоновка позволяет делать это вполне удобно.

Литература.
1. В.Т.ПОЛЯКОВ. ТРАНСИВЕРЫ ПРЯМОГО ПРЕОБРАЗОВАНИЯ Издательство ДОСААФ СССР. 1984 г.
2. Схема приставки к мультиметру для измерения ВЧ.
3. Дылда Сергей Григорьевич. Малосигнальный тракт SSB TRX’a прямого преобразования на диапазон 80м

В 2001г. мной был разработан портативный телеграфный очень простой трансивер на 7-и транзисторах, 3 из которых на передачу, и 4 на приём. Размер трансивера (вместе с блоком питания) получился 100x50x150 мм, вес не более 500 гр. В походных условиях он мог питаться от набора аккумуляторов 12 вольт (10 пальчиковых аккумуляторов ёмкостью по 850 мА/ч) или литиевых батареек. Этот трансивер был собран всего за 4 дня, из которых день ушел на разработку схемы и поиск радиодеталей.

Не смотря на малую выходную мощность трансивера (3...5 ватт), на нем я провёл более 2000 радиосвязей со всеми континентами в течении одного года. Примерно 100 связей с США, 150 с Японией, около 30 с африканским континентом, 10 с Австралией и около сотни связей с Азией и т.д. Основная масса моих корреспондентов была из Европы (европейские страны на этом трансивере переработал все) и европейской части России. А также Урал и Дальний Восток.

Всё зависело от того, какая у меня антенна использовалась в данный момент, и в какую сторону было направлено максимальное излучение. Трансивер работает в 15-метровом радиолюбительском диапазоне, на фиксированной частоте 21001 кГц. Частота стабилизирована кварцем для предотвращения зависимости частоты от температуры и просадки напряжения питания при работе от батарей и аккумуляторов.

Применение кварцевого резонатора в схеме дало возможность получить наибольшую мощность на задающем генераторе и уменьшить число каскадов (транзисторов) в передающей части трансивера.

Рис. 1. Принципиальная схема трансивера на семи транзисторах Дениса Титова.

К этому трансиверу был собран электронный телеграфный ключ, опубликованный в журнале «Радио» на 3-х микросхемах К176ЛЕ5, К176ТМ1, К176ЛА7. Но лучше применять микросхемы серии К561. Вы вправе сами выбрать схему электронного телеграфного ключа, только он должен иметь внутренний тон-генератор для самоконтроля.

На фиксированной частоте надо работать на общий вызов. Но постоянно передавать на ключе CQ с QRP-мощностью было трудно, и мне быстро надоедало. В связи с этим я записал на магнитофон свой общий вызов таким образом: 3 раза даётся CQ, потом 5 раз свой позывной и PSE К. После паузы в 10 секунд всё повторяется заново (до конца кассеты).

Поставил переключатель на выходе магнитофона (который идет на динамик), и с его помощью переключал выходной сигнал либо на динамик, либо на детектор системы VOX, идущий на трансивер. Сигнал с магнитофона попадал на детектор, собранный на 2-х диодах и конденсаторе примерно 0.1 мкФ, далее уже были импульсы, повторяющие форму сигнала, записанного на кассете. Потом эти импульсы подавались на базу транзистора, в коллекторе которого было включено герконовое мини реле РЭС55, и оно замыкало контакты в такт записи на ленте.

Рис. 2. План расположения деталей трансивера.

Эти контакты реле были подключены параллельно коммутационным контактам от электронного ключа. Так выглядел у меня процесс автоматизации передачи общего вызова. У данного трансивера нет переключателя «приём - передача», поэтому вызывающих корреспондентов я слушал в 10-секундных паузах между CQ.

Когда был услышан очередной ответ на мой вызов, «автопилот» можно было отключить и взять управление на себя.

Игорь Григоров (RK3ZK)
Радио 12-2000

Данный трансивер был разработан для работы в эфире в туристических походах, но его можно использовать и как стационарный на QRP радиостанции. Особенность этого аппарата - пониженное напряжение питания, позволяющее использовать вместо традиционного аккумулятора два гальванических элемента.

Для питания практически всех каскадов QRP трансивера достаточно источника питания напряжением в несколько вольт. Исключение составляет усилитель мощности передатчика, получить от которого приемлемую выходную мощность и хороший КПД можно лишь при напряжениях 10 В и выше. В предлагаемом QRP трансивере это противоречие решено введением в конструкцию преобразователя напряжения 3/12 В, что позволило использовать для его питания два гальванических элемента. Испытания аппарата показали, что комплект из двух элементов типа R20 позволяет работать в эфире в течение 5-7 дней по 2-4 часа. Работоспособность трансивера сохранялась при снижении напряжения питания до 2,2 В.

Трансивер предназначен для работы телеграфом на любительских диапазонах 160 и 80 метров. Он выполнен по схеме прямого преобразования частоты. Чувствительность приемного тракта при соотношении сигнал/шум 10 дБ - не хуже 2 мкВ. Мощность, отдаваемая передатчиком в нагрузку сопротивлением 50 Ом, не менее 0,5 Вт. Ток, потребляемый трансивером в режиме приема, не превышает 200 мА, а в режиме передачи - 800 мА. Габариты аппарата - 245 х 110 х 140 мм, а масса - около 1,5 кг

Структурная схема трансивера, совмещенная со схемой межблочных соединений, показана на рис. 1. Он состоит из пяти блоков А1-А5. Гнездо XS1 используют для подключения проволочных антенн, а высокочастотный разъем XW1 - антенн с питанием по коаксиальному кабелю, а также для работы с внешним усилителем мощности. Последовательный контур L1, С1 позволяет согласовать выход передатчика с антеннами, имеющими входное сопротивление от 15 Ом до 1 кОм. Диодный мост VD1-VD4, резистор R1 и измерительный прибор РА1 образуют ВЧ миллиамперметр, контролирующий ток в антенне в режиме передачи.


Принципиальная схема блока А1 показана на рис. 2. В режиме приема сигнал с антенны через контакты переключателя SA1.1 (см. рис.1) и вывод 1 этого блока поступает на двухконтурный полосовой фильтр 1L1, С1.1,C3,1L2, C1.2, перестраиваемый в полосе частот 1,5...4 МГц. Затем через истоковый повторитель на транзисторе 1VT1 сигнал поступает на кольцевой смеситель (1Т1, 1Т2, 1VD1- 1VD4). Через вывод 3 блока на смеситель из блока А4 подается напряжение гетеродина.



Сигнал звуковой частоты после смесителя выделяет фильтр нижних частот 1С11, 1L4, 1С12 с частотой среза около 3 кГц. Через вывод 6 он поступает в блок А2. Питание (+3 В) на истоковый повторитель подается через вывод 7. На транзисторе 1VT2 выполнен резонансный усилитель-удвоитель сигнала гетеродина. Контур 1L3, 1С1.3 в диапазоне 160 метров настроен на основную частоту гетеродина, а в диапазоне 80 метров - на его вторую гармонику. С коллектора 1VT2 сигнал поступает на эмиттерный повторитель на транзисторе 1VT3, а с него, через вывод 5, на блок драйвера-усилителя мощности А4. Каскады на транзисторах 1VT2 и 1VT3 питают напряжением +12 В через вывод 4. Размещение этих каскадов на одной плате с входными каскадами приемного тракта обусловлено тем, что и те и другие перестраиваются по частоте одним блоком КПЕ (1C1).

В блоке А2 (рис. 3) находятся усилитель низкой частоты, ключ выбора „боковой полосы" при передаче и генератор самоконтроля телеграфного сигнала. В качестве УНЧ применена плата от аудиоплеера типа „ARTECH-WM15-EQ", который дополнен выходным трансформатором 2Т1. Трансформатор позволил снизить потребляемый усилителем ток и ограничить его частотную характеристику. При напряжении питания +2...3 В усилитель обеспечивает выходную мощность, достаточную для небольшой динамической головки или головных телефонов с сопротивлением 16 Ом. Регулятор громкости плеера изъят из платы и заменен на переменный резистор (см. R5 на рис. 1), который вынесен на переднюю панель трансивера. С блоком А2 (выводы 7, 8, 9) он соединен проводами, заключенными в экранирующую оплетку.



На транзисторе 2VT1 выполнен инвертор, который используется для управления сдвигом частоты гетеродина в режиме передачи (сдвиг вверх или вниз). В трансиверах прямого преобразования, принимающих одновременно обе боковых полосы, в определенных ситуациях это может оказаться полезным. Напряжение, управляющее сдвигом частоты гетеродина, поступает в блок гетеродина (A3) либо с шины питания передающих каскадов (т.е. при переходе на передачу), либо через инвертор на транзисторе 2VT1 с вывода 3. Выбор варианта работы производят переключателем SA3 (см. рис. 1).

Так как в режиме передачи приемный тракт отключен (снимается напряжение питания +3 В с вывода 7 блока А1 и вывода 5 блока А2), в трансивере применена схема самоконтроля телеграфного сигнала с помощью генератора звуковой частоты - мультивибратора на транзисторах 2VT2, 2VT3. Сигнал генератора с частотой около 1 кГц через эмиттерный повторитель на транзисторе 2VT4 подается в первичную обмотку трансформатора УНЧ. Напряжение питания на генератор поступает через вывод 4 из блока А4 только при нажатии на телеграфный ключ.

Схема ГПД (блок A3) показана на рис. 4. Задающий генератор собран по схеме емкостной „трехточки" на транзисторе ГТ313Б (3VT1). Именно этот тип германиевых транзисторов при напряжении питания +2 В позволил получить наилучшую стабильность частоты и наименее искаженную форму выходного сигнала. Частотозадающий контур образован катушкой 3L1 и конденсаторами ЗС1, ЗС2, ЗС5, ЗС6. Генератор вырабатывает ВЧ напряжение частотой 1750...1850 кГц для диапазона 80 метров и 1830... 1930 кГц для диапазона 160 метров. Транзистор 3VT4 - усилитель сигнала гетеродина. Стабилизатор напряжения питания гетеродина выполнен на элементах3R13, ЗС10, 3VD1-3VD3.



Переключение поддиапазонов генератора осуществляют переключателем SA5 (см. рис. 1). При переходе на диапазон 80 метров на вывод 1 блока A3 поступит напряжение +3 В, транзистор 3VT2 откроется и подключит к частотозадающему контуру дополнительный конденсатор 3С4. Частота гетеродина понизится. Ключ на транзисторе 3VT3 подключает конденсатор 3С7, смещая частоту ГПД в режиме передачи. Как уже отмечалось, управляющий сигнал поступает через вывод 2 с блока А2 (вывод 3). На диапазоне 160 метров смещение составляет 400 Гц, а на диапазоне 80 метров - 800 Гц. Это вполне приемлемо при работе телеграфом.

При смене диапазона необходимо, разумеется, перестроить и конденсатор С1 (по уровню сигнала принимаемых станций или по максимуму отдачи выходного каскада). Напряжение гетеродина через вывод 3 блока подается в блок А1 (вывод 2), где оно усиливается или удваивается (см. выше) и далее на вывод 2 блока А4.

Схема блока А4 приведена на рис. 5. Транзисторы 4VT2, 4VT3 усиливают сигнал гетеродина до уровня, достаточного для работы кольцевого смесителя приемника и раскачки выходного каскада трансивера на транзисторе 4VT4. В коллектор транзистора 4VT4 включен согласующий трансформатор 4Т1. Питание на выходной каскад передатчика подается через ключ на транзисторе 4VT1 только при манипуляции. Ключ подключают к выводу 6 этого блока.



Преобразователь напряжения 3/12 В (блок А5) выполнен по схеме двухтактного генератора с трансформаторной связью. Его схема показана на рис. 6.


В трансивере применены постоянные резисторы типа МЛТ. Переменный резистор R5 (см. рис. 1) - типа СП-1 (зависимость В). Постоянные конденсаторы - КМ (в ГПД), КД, КЛС, К10-17, оксидные конденсаторы - К50-35, К53-14. Переменный конденсатор 1С1 в блоке А1 - стандартный трехсекционный КПЕ-3 от радиоприемника „Мелодия-104" или от ламповых приемников типа „Ригонда". Конденсатор настройки ЗС1 в ГПД изготовлен из подстроечного конденсатора с воздушной изоляцией КПВ-50. Конденсатор С1 - КПЕ-2 (2х12...495 пФ), у которого обе секции включены параллельно. Катушки индуктивности в блоках А1 и A3 намотаны виток к витку проводом ПЭВ-2 0,35 на каркасах диаметром 6 и высотой 20 мм. Число витков - 22. Катушки имеют подстроечники диаметром 2,8 мм из феррита проницаемостью 600 (используются в контурах ПЧ транзисторных приемников). Катушка индуктивности L1 выходного каскада содержит 34 витка провода ПЭВ-2 0,5. Она намотана на каркасе диаметром 20 мм. Длина намотки - 24 мм. В качестве катушки ФНЧ 1 L4 (блокА1) использована магнитная головка плеера.

Трансформаторы смесителя намотаны проводом ПЭВ-2 0,12 на кольцевых ферритовых магнитопроводах (600НН) типоразмера К10х6х5 мм. Число витков - 3х25. Трансформатор 4Т1 усилителя мощности намотан на кольцевом ферритовом магнитопроводе 2000НМ типоразмера К17,5х8,2х5 мм. Число витков - 2х10, провод ПЭЛШО 0,31. Трансформатор 2Т1 в УНЧ - выходной от транзисторного приемника "Альпинист".

Трансформатор преобразователя напряжения намотан на кольцевом ферритовом магнитопроводе (2000НМ) типоразмера К17,5х8,2х5 мм. Первичная обмотка содержит 2х12 витков провода ПЭВ-2 0,18, вторичная - 48+10+48 витков провода ПЭВ-2 0,3. Вторичная обмотка расположена поверх первичной равномерно по периметру кольца.

Большинство деталей трансивера размещено на пяти платах из двухстороннего фольгированного стеклотекстолита. Размеры плат: А1 - 100х90 мм, А2 - 200Х40 мм, A3 - 80Х70 мм, А4 - 95х35 мм, A5 - 60х40 мм. Фольга с одной стороны плат сохранена в качестве экрана. Монтаж выполнен на второй стороне на пятачках фольги, которые прорезают по месту установки деталей. Конечно, возможна сборка трансивера и на единой плате. Блок ГПД A3 заключен в экран, также спаянный из фольгированного стеклотекстолита. Транзистор 3VT4 снабжен алюминиевым радиатором размерами 20х20х4 мм. Транзисторы преобразователя 5VT1, 5VT2 также имеют небольшие радиаторы - медные пластинки размерами 15х15х5 мм.

Трансивер собран в корпусе из фольгированного стеклотекстолита. Примерное расположение блоков в трансивере показано на рис. 7. При использовании миниатюрных переключателей, малогабаритных переменных конденсаторов размеры и вес трансивера можно существенно уменьшить.



При работе в полевых условиях на диапазоне 80 метров удавались связи на расстояние до 500 км, а на диапазоне 160 метров были проведены связи до 300 км. Работа велась на проволочную антенну длиной 41 м. Трансивер показал себя достаточно надежным аппаратом, сохранявшим стабильность частоты и выходную мощность при разряде батарей питания.

Проводились эксперименты по питанию трансивера от двух аккумуляторов типа НКГЦ-1,5. При постоянной подзарядке аккумуляторов небольшой солнечной батареей, выдающей максимальный ток 40 мА, работа была возможна до 14 дней от одной полной зарядки аккумуляторов по 3-4 ч в день.

Описание и основные виды трансиверов, используемых в радиосвязи

Трансивер

Согласитесь, довольно часто мы слышим загадочное и непонятное слово «трансивер» , причем используется оно в различных сферах деятельности. По своей сути трансивер является устройством приема-передачи различных сигналов между объектами, находящимися на определенном удалении друг от друга. Сам термин появился в результате симбиоза двух английских слов: transmitter и receiver , передатчик и приемник соответственно. Этот небольшой экскурс в историю образования термина во многом объяснят обширность его применения. На данном этапе своего развития человечество активно использует приемопередающее оборудование практически во всех сферах своей жизнедеятельности. Так, свет увидели сетевые трансиверы,, рации трансиверного типа и многое другое. В данной статье мы сузим область наших интересов и поговорим только о тех трансиверах, которые используются в радиосвязи.

Итак, трансивер представляет собой рацию, где основные функциональные узлы (гетеродины, усилители, фильтры и прочее) осуществляют работу в двух направлениях (прием\передача). Подобный процесс требует автосогласования приемных и передающих частот. За счет представленных особенностей строения и реализации переговорного процесса, в трансивере присутствует меньше органов управления, что существенно облегчает всю конструкцию.

Следовательно, каждый трансивер представляет собой , но далеко не каждая рация является трансивером. Хотя, справедливости ради, стоит отметить, что в настоящее время радиостанции все чаще создаются по трансиверной схеме (с объединенными оперативными узлами).

Трансивер: преимущества

Чуть выше мы уже коснулись основных преимуществ трансивера, но для полного раскрытия образа, следует еще раз определить наиболее важные плюсы:

  • небольшая стоимость и легкий вес (это обусловлено простой конструкцией, где нет большого количества элементов);
  • стабильная связь в неблагоприятных погодных условиях (ни проливной дождь, ни плотный туман, ни перепады температуры не помешают вам вести переговоры);
  • мобильность (компактные габариты позволяют трансиверу всегда находиться под рукой, например в походах).

Трансивер: принцип работы

Сам по себе процесс работы трансивера абсолютно не сложный и любой радиолюбитель знает его достаточно хорошо. Схематично это выглядит так: антенна приемного элемента ловит поступающие электромагнитные сигналы, которые сразу передаются на источник переменного тока и там проходят первичную обработку от шумов. После этой процедуры сигнал проходит дальнейшую очистку с помощью специальных фильтров, усилителей и прочее. На данном этапе происходит вычленение и усиление необходимой информации. Далее в работу вступают генераторы и синтезаторы частот, именно они обеспечивают движение сигнала и, в зависимости от необходимости, меняют длину волны, выполняют преобразование частот и тд. В конечном итоге модифицированный сигнал поступает на передатчик.

Как видно из схемы, помимо двух основных элементов, в трансивере находится еще ряд функциональных узлов, которые проводят все внутренние операции с сигналами.

  1. Генератор. С его помощью трансивер усиливает слабые сигналы и улучшает качество поступающих волн.
  2. Частотный синтезатор. Он генерирует высокоточные сигналы для их распространения на большие территории.
  3. Частотный конвертор. Главной задачей данного узла является преобразование частот, если того требует обстоятельства. Например, при передаче волн на устройства с другой частотной сеткой.

Поскольку организация работы трансивера в принципе довольно простая, то радиолюбитель может создать образец трансивера самостоятельно. Это было особенно распространено несколько десятилетий назад, когда телевидение было черно-белым, а об интернете могли только мечтать.

Трансивер: виды

В области радиосвязи существует несколько классификаций трансиверов:

По волновому диапазону:


КВ-трансивер
. Как видно из названия данный трансивер работает исключительно с короткими волнами (3-30 МГц) и может транслировать информацию на достаточно большие расстояния при относительно малой мощности. На одной небольшой территории могут работать сразу несколько КВ-трансиверов, абсолютно не мешая друг другу. Работа с короткими волнами подразумевает не только пользование их преимуществами, но и нивелирование их недостатков. Так, КВ имеют различную проходимость в зависимости от времени суток, а иногда наблюдается непродолжительное замирание волн. Производители КВ-трансиверов учитывают все эти особенности и разрабатывают свои продукты соответствующим образом.

УКВ-трансивер . Этот приемопередатчик использует волны УКВ (30-300 МГц). Их главной особенностью является распространения только в диапазоне прямой видимости.

По назначению:


Любительский трансивер.
К этой категории относятся те модели, которые применяются для организации связи между непрофессиональными абонентами в строго регламентированных частотах. Любительский трансивер, как правило, оснащен богатым внешним функционалом (дисплей, программируемые клавиши, регуляторы).

Профессиональный трансивер. Чаще всего он используется в военных и силовых структурах, для обеспечения оперативной связи, например на учениях. Органов управления обычно немного, поскольку функциональные задачи профессионального трансивера ограничены и подчинены одной единственной цели - установлению качественного соединения в нужное время.

Компания «Маринэк» предлагает широкий выбор любительских и профессиональных КВ-трансиверов от таких именитых производителей как , , , .