В состав каких органических веществ входит азот. Взаимодействие с кислотами

ЛИПИДЫ

Липиды - природные органические соединения, многие из которых являются эфирами жирных кислот и спиртов. Общими свойствами липидов являются их гидрофобность и нерастворимость в воде, но все они по-разному растворяются в органических растворителях - эфире, бензине, хлороформе, ацетоне и др.

Из липидов в товароведении продовольственных товаров изучают жиры, высокомолекулярные кислоты и липоиды.

Жиры. Обладают высокой энергетической ценностью - 1 г жира при окислении выделяет 9,0 ккал (37,7 кДж), активно участвуют в пластических процессах, входя в состав оболочек живых клеток и других структур, а также откладываются в тканях организма. Они являются источником необходимых витаминов и других биологически активных веществ. Жиры широко используют при производстве многих продовольственных товаров, они улучшают вкусовые свойства пищи.

По происхождению жиры делят на растительные и животные.

К растительным жирам (маслам) относят масло какао, кокосовое и пальмовое.

Жидкие жиры в зависимости от свойств делят на невысыхающие (оливковое, миндальное) и высыхающие (льняное, конопляное, маковое и др.) масла.

Животные жиры также делят на жидкие и твердые. Различают жидкие жиры наземных животных (копытный жир) и жидкие жиры морских животных и рыб (рыбий жир, жир печени китов и др.). Животные твердые жиры - говяжий, свиной, бараний, а также коровье масло.

По химическому составу жиры представляют собой смесь сложных эфиров трехатомного спирта глицерина С 3 Н 5 (ОН) 3 и жирных кислот. В состав жиров входят остатки жирных кислот предельных (насыщенных) и непредельных (ненасыщенных). Жиры разного происхождения отличаются друг от друга составом жирных кислот. Все жирные кислоты, входящие в состав жиров, содержат четное число атомов углерода - от 14 до 22, но чаще 16 и 18. Растительные жиры, кроме кокосового масла и масла бобов какао, остаются жидкими при температуре, близкой к О °С, так как содержат значительное количество непредельных жирных кислот.

Насыщенные жирные кислоты - пальмитиновая (С 15 Н 31 СООН), стеариновая (С 17 Н 35 СООН), миристиновая (С 13 Н 27 СООН).Эти кислоты используются в основном как энергетический материал, содержатся в наибольших количествах и в животных жирах, что определяет высокую температуру плавления (50-60 °С) и твердое состояние этих жиров.

Ненасыщенные жирные кислоты подразделяют на мононенасыщенные (содержат одну ненасыщенную водородную) и полиненасыщенные (несколько связей). Основной представитель мононенасыщенных жирных кислот - олеиновая кислота (С 18 Н 34 О 2), содержание которой в оливковом масле составляет 65%, в сливочном масле - 23%.



К полиненасыщенным жирным кислотам относят линолевую (С 18 Н 32 О 4)с двумя двойными связями; линоленовую (С 18 Н 30 О 2)с тремя двойными связями и арахидоновую (С 20 Н 32 О 2), с четырьмя двойными связями. Незаменимыми жирными кислотами являются линолевая, линоленовая и арахидоновая. Они обладают наибольшей химической активностью, принадлежат к витаминоподобным соединениям и носят название фактора F. Арахидоновая кислота находится в рыбьем жире и жире морских животных. Основной источник линолевой кислоты - подсолнечное масло (60%). В растительных маслах преобладают олеиновая, линолевая и линоленовая кислоты. В стандартах на растительные масла имеется показатель - йодное число, который характеризует степень ненасыщенности кислот. Чем выше йодное число, тем больше ненасыщенных кислот в жире, тем выше вероятность его прогоркания.

Усвояемость жиров в значительной степени зависит от температуры плавления. По усвояемости различают: жиры с температурой плавления 37 "С, усвояемость 70-98% (все жидкие жиры, жиры молока, свиной топленый, жиры птиц и рыб); жиры с температурой плавления 50-60 °С усваиваются плохо (бараний жир - 44-51 °С).

Жидкие жиры могут превращаться в твердые путем насыщения водородом непредельных жирных кислот. Этот процесс называется гидрогенизацией. Получение маргарина основано на гидрогенизации жира.

Жиры нерастворимы в воде, но в присутствии белков слизистых веществ, называемых эмульгаторами, способны образовывать с водой стойкие эмульсии. На этом свойстве жиров основано получение маргарина, майонеза и различных кремов.

Жиры легче воды, так как они имеют плотность ниже единицы - 0,7-0,9. У жиров высокая температура кипения, поэтому их используют для жарки, они не испаряются с горячей сковороды. Однако при сильном нагревании (240-260 °С) жир разлагается, образуя летучие сильно пахнущие вещества. Жиры относятся к нестойким соединениям, поэтому в процессе производства, обработки и хранения под влиянием внешних факторов в них могут происходить процессы гидролиза (расщепление на глицерин и свободные жирные кислоты в присутствии воды, кислот, ферментов). Гидролиз является первоначальной стадией порчи жиров при хранении. Образующиеся свободные жирные кислоты придают жиру посторонний привкус, поэтому в стандарты на пищевые жиры введен показатель качества жиров - кислотное число. В промышленности из жиросодержащего сырья при высокой температуре в присутствии щелочей получают мыло (процесс омыления).

Окисление жира - процесс химического взаимодействия кислорода и остатков непредельных жирных кислот триглицеридов - протекает в три стадии.

Окисление жиров под действием атмосферного кислорода называется автоокислением. Первая стадия автоокисления - индукционный период, когда окислительные процессы в жирах почти не обнаруживаются. Устойчивость различных жиров и масел к окислению характеризуется сравнительной длительностью их индукционных периодов. На второй стадии автоокисления происходят реакции, в результате которых образуются перекисные соединения. На третьей стадии протекают вторичные реакции перекисных соединений, в результате чего в жирах накапливаются гидроперекиси и продукты их превращений - альдегиды, кетоны, свободные низко-молекулярные жирные кислоты, которые изменяют вкус и запах жиров и масел и существенно снижают их пищевое достоинство.

Липоиды (жироподобные вещества). К ним относятся фосфатиды, стерины и воски.

Фосфатиды являются липидами, содержащими связанную фосфорную кислоту. Представляют собой сложные эфиры обычно одноатомных спиртов, одна или две спиртовые группы которых этерифицированы фосфорной кислотой. В фосфатиды, кроме остатков фосфорной кислоты входит одно из азотистых оснований - холин, коламин или серин. Фосфатиды, состоящие из остатков глицерина, жирных кислот, фосфорной кислоты и холина, называются лецитинами. Лецитин в воде не растворим, но образует с ней эмульсии. Это свойство лецитина используется в маргариновой промышленности, при производстве шоколада, вафель, печенья. Много лецитина в яичном желтке (9,4%), сое (1,7%), молочном жире (1,3%), грибах (7,0%), нерафинированных растительных маслах.

Кефалин - это фосфатид, в котором фосфорная кислота соединена с каломином, являющимся менее сильным основанием, чем холин. Кефалин обладает более кислыми свойствами, чем лецитин; играет важную роль в процессе свертывания крови.

Стерины - высокомолекулярные циклические спирты, в жирах встречаются в свободном виде и в виде стеридов - эфиров жирных кислот. В состав животных жиров входит холестерин (мозг, яичный желток, плазма крови - 1,6%). В растительных и бактериальных клетках наибольшее значение имеет эргостерин, отличающийся от холестерина двумя дополнительными двойными связями и одной дополнительной метильной группой, под действием ультрафиолетовых лучей эргостерин превращается в кальциферол - витамин D.

Воски по химической природе близки к жирам. Растительные воски образуют налет на поверхности листьев, плодов, овощей, который защищает их от микробов, высыхания, излишней влажности. К воскам животного происхождения относится пчелиный воск.

Аминокислоты являются основными структурными компонентами молекул белка и в свободном виде появляются в продовольственных товарах в процессе распада белка.

Амиды аминокислот содержатся в растительных продуктах в качестве естественной составной части. Например, в капусте и спарже находится амид аспарагина (0,2-0,3%).

Аммиачные соединения встречаются в продовольственных товарах в малых количествах в виде аммиака и его производных. Аммиак является конечным продуктом распада белков. Значительное количество аммиака и аминов указывает на гнилостное разложение белков продовольственных товаров. Поэтому при исследовании свежести мяса и рыбы определяют содержание в них аммиака. К производным аммиака относятся моноамины СH 3 NН 2 , диметиламины (СH 3) 2 NH и триметиламины (СH 3) 3 NH, которые обладают специфическим запахом. Метиламин имеет запах, сходный с аммиаком. Диметиламин - газообразное вещество с запахом селедочного рассола, образуется в основном при гниении белков рыбы и других продуктов. Триметиламин - газообразное вещество, содержащееся в значительном количестве в селедочном рассоле. В концентрированном виде обладает запахом аммиака, но в слабых концентрациях имеет запах гнилой рыбы.

Нитраты - соли азотной кислоты. В продовольственных товарах содержатся в незначительных количествах, за исключением тыквы и кабачков.

Нитриты добавляют в небольших количествах при посоле мяса и в колбасный фарш для придания мясу розового цвета. Нитриты обладают высокой токсичностью, поэтому применение их в пищевой промышленности лимитируется (в мясной колбасный фарш добавляют раствор нитрита из расчета не более 0,005% массы мяса).

Белки имеют наиболее важное из азотсодержащих соединений значение для питания человека. Они являются наиболее важными органическими соединениями, входящими в состав живых организмов. Еще в прошлом веке, изучая состав различных животных и растений, ученые выделили вещества, которые по некоторым свойствам напоминали яичный белок: так, при нагревании они свертывались. Это и дало основание назвать их белками. Значение белков как основы всего живого было отмечено еще Ф. Энгельсом. Он писал, что там, где есть жизнь, обнаруживаются белки, а где присутствуют белки, там отмечены признаки жизни.

Таким образом, термином "белки" назван большой класс органических высокомолекулярных азотсодержащих соединений, присутствующих в каждой клетке и определяющих ее жизнедеятельность.

Химический состав белков. Химический анализ показал наличие во всех белках (в %): углерода - 50-55, водорода - 6-7, кислорода - 21-23, азота - 15-17, серы - 0,3-2,5. В отдельных белках обнаружены фосфор, йод, железо, медь и некоторые макро- и микроэлементы в различных количествах.

Для определения химической природы мономеров белка проводят гидролиз - длительное кипячение белка с сильными минеральными кислотами или основаниями. Наиболее часто применяют 6N HNO 3 и кипячение при 110 °С в течение 24 ч. На следующем этапе разделяют вещества, входящие в состав гидролизата. Для этой цели применяют метод хроматографии. Наконец, природу выделенных мономеров выясняют с помощью определенных химических реакций. В результате было установлено, что исходными составными частями белков являются аминокислоты.

Молекулярная масса (м.м.) белков от 6000 до 1 000000 и выше, так, м.м. белка альбумина молока - 17400, глобулина молока - 35200, яичного альбумина - 45000. В организме животных и растений белок встречается в трех состояниях: жидком (молоко, кровь), сиропообразном (яичный белок) и твердом (кожа, волосы, шерсть).

Благодаря большой м.м. белки находятся в коллоидном состоянии и диспергированы (распределены, рассеяны, взвешаны) в растворителе. Большинство белков относится к гидрофильным соединениям, способны вступать во взаимодействие с водой, которая связывается с белками. Такое взаимодействие называется гидратацией.

Многие белки под влиянием некоторых физических и химических факторов (температура, органические растворители, кислоты, соли) свертываются и выпадают в осадок. Этот процесс называется денатурацией. Денатурированный белок теряет способность к растворению в воде, растворах солей или спирте. Все продовольственные товары, переработанные с помощью высоких температур, содержат денатурированный белок. У большинства белков температура денатурации составляет 50-60 °С. Свойство белков денатурироваться имеет важное значение, в частности, при выпечке хлеба и получении кондитерских изделий. Одно из важных свойств белков - способность образовывать гели при набухании в воде. Набухание белков имеет большое значение при производстве хлеба, макаронных и других изделий. При "старении" гель отдает воду, при этом уменьшается в объеме и сморщивается. Это явление, обратное набуханию, называется синерезисом.

При неправильном хранении белковых продуктов может происходить более глубокое разложение белков с выделением продуктов распада аминокислот, в том числе аммиака и углекислого газа. Белки, содержащие серу, выделяют сероводород.

Человеку требуется 80-100 г белков в сутки, в том числе 50 г животных белков. При окислении 1 г белка в организме выделяется 16,7 кДж, или 4,0 ккал.

Аминокислоты - это органические кислоты, у которых атом водорода а-углеродного атома замещен на аминогруппу NH 2 . Следовательно, это α-аминокислота с общей формулой

Следует отметить, что в составе всех аминокислот имеются общие группировки: - СН 2 , -NH 2 , -СООН, а боковые цепи аминокислот, или радикалы (R), различаются. Химическая природа радикалов разнообразна: от атома водорода до циклических соединений. Именно радикалы определяют структурные и функциональные особенности аминокислот.

Аминокислоты в водном растворе находятся в ионизированном состоянии за счет диссоциации аминных и карбоксильных групп, а также групп, входящих в состав радикалов. Другими словами, они являются амфотермными соединениями и могут существовать либо как кислоты (доноры протонов), либо как основания (акцепторы протонов).

Все аминокислоты в зависимости от структуры разделены на несколько групп

Рис1.1. Классификация аминокислот

Из 20 аминокислот, которые участвуют в построении белков, не все обладают одинаковой биологической ценностью. Некоторые аминокислоты синтезируются организмом человека, и потребность в них удовлетворяется без поступления извне. Такие аминокислоты называются заменимыми (гистидин, аргинин, цистин, тирозин, аланин, серии, глутаминовая и аспарагиновая кислоты, пролин, оксипролин, глицин). Другая часть аминокислот не синтезируется организмом и они должны поступать с пищей. Их называют незаменимыми (триптофан). Белки, содержащие все незаменимые аминокислоты, называются полноценными, а если отсутствует, хотя бы одна из незаменимых кислот - белок является неполноценным.

Классификация белков. В основу классификации белков положены их физико-химические и химические особенности. Белки делят на простые (протеины) и сложные (протеиды). К простым относят белки, которые при гидролизе дают только аминокислоты. К сложным - белки, состоящие из простых белков и соединений небелковой группы, называемой простетической.

К протеинам относятся альбумины (молока, яиц, крови), глобулины (фибриноген крови, миозин мяса, глобулин яиц, туберин картофеля и др.), глютелины (пшеницы и ржи), продамины (глиадин пшеницы), склеропротеины (коллаген костей, эластин соединительной ткани, кератин волос).

К протеидам относятся фосфопротеиды (казеин молока, вителлин куриного яйца, ихтулин икры рыб), которые состоят из белка и фосфорной кислоты; хромопротеиды (гемоглобин крови, миоглобин мышечной ткани мяса), представляющие собой соединения белка глобина и красящего вещества; глюкопротеиды (белки хрящей, слизистых оболочек), состоящие из простых белков и глюкозы; липопротеиды (белки, содержащие фосфатид) входят в состав протоплазмы и хлорофилловых зерен; нуклеопротеиды содержат нуклеиновые кислоты и играют важную для организма роль в биологическом отношении.

Соединения, содержащие в структуре своих молекул атомы азота, широко распространены в природе (белковые вещества, физиологически активные соединения, полимерные материалы и т.д.). К наиболее простым относятся:

а) нитрозосоединения

б) нитросоединения

в
) амины:

г) диазосоединения

д) азосоединения

ж) нитрилы

з) аминоспирты, аминокислоты, аминосахара и т.д.

Нитросоединения

Нитросоединения – вещества, содержащие в своем составе нитрогруппу –NO 2 (может быть одна или несколько). В зависимоси от углеводоодного радикала различают алифатические (насыщенные и ненасыщенные), ациклические, ароматические, гетероциклические. По типу углерода, с которым связана нитрогруппа – первичные, вторичные, третичные нитросоединения.

Стронение нитрогруппы отличается рядом особенностей, которые влияют на физические и химические свойства нитросоединений. Установлено, что оба атома кислорода в нитрогруппе абсолютно равноценны и строение нитрогруппы может быть изображено в виде:

т.е электронная плотность распределена равномерно

При названии нитросоединений к названию соответствующего углеводорода добавляется приставка нитро-:

Изомерия связана со строением углеводородного радикала и положением нитрогруппы.

СПОСОБЫ ПОЛУЧЕНИЯ

1. Нитрование алканов (реакция Коновалова)

2. Нитрование аренов

3. Алкилирование нитритов галогенопроизводными

4. Окисление первичных ароматических аминов перкислотами

Физические свойства

Нитросоединения алифатические – высококипящие жидкости с приятным запахом, плохо или совсем не растворимые в воде. Начиная с С 4 – ρ>1. Ароматические нитросоединения – жидкости или твердые вещества, имеющие запах горького миндаля, ядовиты. Из-за наличия семиполярной связи в молекулах нитросоединения обладают повышенной полярностью, высокими t кип. и t пл. , большим электрическим дипольным моментом. При накоплении в молекуле нитрогрупп полинитросоединения становятся взрывчатыми.

ХИМИЧЕСКИЕ СВОЙСТВА

Химические свойства обусловлены наличием нитрогруппы, строением углеводородного радикала и влиянием их друг на друга.

1. Восстановление. Проводится в кислой, щелочной либо нейтральной среде до образования первичных аминов. В зависимости от условий и характера восстановителя образуются различные промежуточные продукты.

1.1. Восстановление в кислой среде Fe или Sn. Промежуточные продукты выделить не удается:

1.2. Восстановление в нейтральной среде осуществляется Zn. Можно остановить реакцию и выделить фенилгидроксиламин (стадии 1, 2, 3).

1.3. Восстановление в щелочной среде позволяет выделить промежуточно образующиеся азоксибензол, азобензол и гидразобензол:

Любые продукты реакции восстановления можно получить электрохимическим путем, подобрав соответствующий режим электролиза.

2. Окислительно-восстановительные реакции . Так как нитрогруппа обладает достаточно сильным окислительным действием, которое может проявляться внутримолекулярно при подборе соответствующих условий. При этом атом азота – восстанавливается, а соседний с ним атом углерода – окисляется.

Первичные нитросоединения под действием концентрированных минеральных кислот при нагревании образуют карбоновую кислоту и гидроксиламин:

Под действием разбавленных минеральных кислот из первичных аминов образуются альдегиды, из вторичных – кетоны (реакция Нефа):

В ароматических аминах окисляется углеводородная цепочка (если такая имеется), находящаяся в о -положении по отношению к нитрогруппе:

3. Действие щелочей (таутомерия нитросоединений). Реакция протекает только для первичных и вторичных нитросоединений (третичные со щелочами не реагируют). Так как группа –NO 2 обладает сильными акцепторными свойствами, водород в α-положении по отношению к ней обладает повышенной подвижностью. Поэтому нитросоединения могут медленно растворяться в щелочах с образованием соли аци-формы, которая при дальнейшем подкислении переходит в аци-нитроформу (нитроновую кислоту), а последняя – в нитроформу. Такой переход форм друг в друга называется таутомерным.

4. Действие азотистой кислоты . Позволяет различить первичные и вторичные нитросоединения (третичные – не реагируют). Реакция также обусловлена подвижностью водорода в α-положении. Первичные при взаимодействии с HNO 2 образуют α-нитрозонитросоединения, таутомерные с нитроловыми кислотами:

Щелочные соли нитроловых кислот имеют ярко-красный цвет.

Вторичные нитросоединения с HNO 2 образуют псевдонитролы:

Растворы псевдонитролов в эфире и хлороформе имеют синий цвет.

5. Конденсация с альдегидами . Подвижность водорода в α-положении позволяет провести реакции конденсации с альдегидами по альдольно-кротоновому типу.

Если для конденсации используется бензальдегид, промежуточный альдоль из-за своей неустойчивости практически сразу переходит в β-нитростиролов:

6. Реакции углеводородных радикалов . Алифатические нитросоединения могут быть прогалогенированы в присутствии щелочей в α-положение.

Непредельные нитросоединения проявляют все свойства кратных связей (кроме реакции восстановления). Присоединение к α, β-кратным связям идет против правила Марковникова, так как группа –NO 2 проявляет сильные акцепторные свойства.

Для ароматических нитросоединений реакции электрофильного замещения протекают более трудно, чем для бензола, так как нитрогруппа является заместителем 2-го рода (электроноакцепторный заместитель), затрудняет реакции с электрофильными реагентами.

Реакции с нуклеофильными реагентами нитрогруппа облегчает. При кипячении с КОН образуется смесь о - и п -нитрофенолятов калия:

При увеличении числа нитрогрупп, стоящих в м -положении по отношению друг к другу, нитросоединения проявляют еще большую реакционноспособность по отношению к нуклеофильным реагентам. Тринитробензол в щелочной среде окисляется очень слабыми окислителями (железосинеродистым калием) до пикриновой кислоты:

Амины. Эти органические соединения являются производными аммиака. Их можно рассматривать как продукты замещения одного, двух или трех атомов водорода в молекуле аммиака углеводородными радикалами:

H ─ N: CH 3 ─ N: CH 3 ─ N: CH 3 ─ N:

аммиак метиламин диметиламин триметиламин

Амины представляют собой органические основания. За счет неподеленной пары электронов у атома азота их молекулы, подобно молекуле аммиака, могут присоединять протоны:

CH 3 ─ N: + Н─О─Н → СН 3 ─ N─Н ОН -

гидроксид метиламмония

Аминокислоты и белки

Большое биологическое значение имеют аминокислоты - соединения со смешенными функциями, в которых, как в аминах, содержатся аминогруппы ─ NН 2 и одновременно, как в кислотах, - карбоксильные группы ─СООН.

Строение аминокислот выражается общей формулой (где R- углеводородный радикал, который может содержать и различные функциональные группы):

Н 2 N─CH ─ C─OH

Н 2 N─CH 2 ─ C─OH Н 2 N─CH ─ C─OH

глицин аланин

Аминокислоты - амфотерные соединения: они образуют соли с основаниями (за счет карбоксильной группы) и с кислотами (за счет аминогруппы).

Ион водорода, отщепляющийся при диссоциации от карбоксила аминокислоты, может переходить к ее аминогруппе с образованием аммониевой группировки. таким образом, аминокислоты существуют и вступают в реакции также в виде биполярных ионов (внутренних солей):

Н 2 N─CH ─ COOH ↔ Н 3 N + ─CH ─ COO -

аминокислота биполярный ион

(внутренняя соль)

Этим объясняется, что растворы аминокислот, содержащих одну карбоксильную и одну аминогруппу, имеют нейтральную реакцию.

Из молекул аминокислот строятся молекулы белковых веществ, или белков, которые при полном гидролизе под влиянием минеральных кислот, щелочей или ферментов распадаются, образуя смеси аминокислот.

Белки - природные высокомолекулярные азотсодержащие органические соединения. Они играют первостепенную роль во всех жизненных процессах, являются носителями жизни.

В состав белков входят углерод, водород, кислород, азот и, часто сера, фосфор, железо. Молекулярные массы белков очень велики - от 1500 до нескольких миллионов.

Структуру молекулы белка можно представить следующим образом:

R R′ R R" R"′

│ │ │ │ │



Н 2 N─CH ─ C─... НN─CH ─ C─.... НN─CH ─ C─... НN─CH ─ C─.... НN─CH ─ C─ОН

║ ║ ║ ║ ║

В молекулах белков многократно повторяются группы атомов ─СО─NH─; их называют амидными, или в химии белков - пептидными группами.

Задачи, контрольные вопросы

1. Сколько м 3 оксида углерода (IV) образуется при сжигании: а) 5 м 3 этана; б) 5 кг этана (н.у.)?

2. Напишите структурные формулы алкенов нормального строения, содержащих: а) четыре; б) пять; в) шесть атомов углерода.

3. Напишите структурную формулу н-пропанола.

4. Какие соединения относятся к карбонильным? Приведите примеры, напишите структурные формулы и укажите в них карбонильную группу.

5. Что такое углеводы? Приведите примеры.

Важнейшие органические и неорганические полимеры,

их строение и классификация

Высокомолекулярными соединениями, или полимерами , называют сложные вещества с большими молекулярными массами (порядка сотен, тысяч, миллионов), молекулы которых построены из множества повторяющихся элементарных звеньев, образующихся в результате взаимодействия и соединения друг с другом одинаковых или разных простых молекул - мономеров.

Олигомер - молекула в виде цепочки из небольшого числа одинаковых составных звеньев. Этим олигомеры отличаются от полимеров, в которых число звеньев теоретически неограниченно. Верхний предел массы олигомера зависит от его химических свойств. Свойства олигомеров сильно зависят от изменения количества повторяющихся звеньев в молекуле и природы концевых групп; с момента, когда химические свойства перестают изменяться с увеличением длины цепочки, вещество называют полимером.

Мономер - вещество, состоящее из молекул, каждая из которых может образовывать одно или несколько составных звеньев.

Составное звено - атом или группа атомов, входящих в состав цепи молекулы олигомера или полимера.

Степень полимеризации - число мономерных звеньев в макромолекуле.

Молекулярная масса является важной характеристикой высокомолекулярных соединений - полимеров, определяющая их физические (и технологические) свойства. Число мономерных звеньев, входящих в состав различных молекул одного и того же полимерного вещества различно, вследствие чего молекулярная масса макромолекул полимера также неодинакова. Поэтому при характеристике полимера говорят о среднем значении молекулярной массы. В зависимости от способа усреднения - принципа, лежащего в основе метода определения молекулярной массы, различают три основных типа молекулярных масс.

Среднечисловая молекулярная масса - усреднение по числу макромолекул в полимере:

v i -числовая доля макромолекул с молекулярной массой M i , N - число фракций

Среднемассовая молекулярная масса - усреднение по массе молекул в полимере:

Где w i - массовая доля молекул с молекулярной массой M i .

Молекулярно-массовое распределение (ММР) полимера (или его полидисперсность) - является его важнейшей характеристикой и определяется соотношением количеств n i макромолекул c различной молекулярной массой M i в данном полимере. ММР оказывает существенное влияние на физические характеристики полимеров, и, прежде всего, на механические свойства.

ММР характеризуют числовой и массовой долей макромолекул, чьи молекулярные массы (М), лежат в интервале от M до M+dM . Определяют числовую и массовую дифференциальные функции ММР:

dN M - число макромолекул в интервале dM ;

dm M - масса макромолекул в интервале dM ;

N 0 - общее число макромолекул в образце массой m 0 .

Для количественного сравнения ММР различных полимеров пользуются соотношениями средних значений их молекулярных масс.

Классификация полимеров

По происхождению полимеры делятся на:

природные (биополимеры ), например белки, нуклеиновые кислоты, смолы природные,

и синтетические , например, полиэтилен, полипропилен, феноло-формальдегидные смолы.

Атомы или атомные группы могут располагаться в макромолекуле в виде:

открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры , например каучук натуральный);

цепи с разветвлением (разветвленные полимеры , например амилопектин),

трехмерной сетки (сшитые полимеры , сетчатыми, или пространственными, называются полимеры, построенные из длинных цепей, соединенных друг с другом в трехмерную сетку поперечными химическими связями; например отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (например поливинилхлорид, поликапроамид, целлюлоза).

Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными .

Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами .

Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами .

К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми .

Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами .

В зависимости от состава основной (главной) цепи полимеры, делят на: гетероцепные , в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора,

и гомоцепные , основные цепи которых построены из одинаковых атомов.

Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторзтилен.

Примеры гетероцепных полимеров - полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры.

Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими . Отдельную группу полимеров образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид.

Важнейшие природные и искусственные полимеры. Биополимеры.

Примерами природных высокомолекулярных соединений (биополимеров) могут служить крахмал и целлюлоза, построенные из элементарных звеньев, являющихся остатками моносахарида (глюкозы), а также белки, элементарные звенья которых представляют собой остатки аминокислот; сюда же относятся природные каучуки.

В настоящее время создано огромное количество искусственных полимеров. На основе их получают пластические массы (пластмассы ) - сложные композиции, в которые вводят различные наполнители и добавки, придающие полимерам необходимый комплекс технических свойств, - а также синтетические волокна и смолы.

Полиэтилен - полимер, образующийся при полимеризации этилена, например, при сжатии его до 150 -250 МПа при 150-200 0 С (полиэтилен высокого давления)

СН 2 =СН 2 + СН 2 =СН 2 + СН 2 =СН 2 → ... ─СН 2 ─СН 2 ─СН 2 ─СН 2 ─СН 2 ─СН 2 ─СН 2 ─...

полиэтилен

или n СН 2 =СН 2 →(─СН 2 ─СН 2 ─) n

Полиэтилен - предельный углеводород с молекулярной массой от 10 000 до 400 000. Он представляет собой бесцветный полупрозрачный в тонких и белый в толстых слоях, воскообразный, но твердый материал с температурой плавления 110-125 0 С. Обладает высокой химической стойкостью и водонепроницаемостью, малой газопроницаемостью.

Полипропилен - полимер пропилена

n

СН 3 СН 3 СН 3

пропилен полипропилен

В зависимости от условий полимеризации получают полипропилен, различающийся по структуре макромолекул, а. следовательно, и по свойствам. По внешнему виду это каучукоподобная масса, более или менее твердая и упругая. Отличается от полиэтилена более высокой температурой плавления.

Полистирол

n СН 2 =СН → ─СН 2 ─СН─СН 2 ─СН─

С 6 Н 5 С 6 Н 5 С 6 Н 5

стирол полистирол

Поливинилхлорид

n СН 2 =СН → ─СН 2 ─СН─СН 2 ─СН─

винилхлорид поливинилхлорид

Это эластичная масса, очень стойкая к действию кислот и щелочей.

Политетрафторэтилен

n СF 2 =С F 2 → (─ СF─СF─) n

тетрафторэтилен политетрафторэтилен

Политетрафторэтилен выпускается в виде пластмассы, называемой тефлоном, или фторопластом. Весьма стоек по отношению к щелочам и концентрированным кислотам, по химической стойкости превосходит золото и платину. Негорюч, обладает высокими диэлектрическими свойствами.

Каучуки - эластичные материалы, из которых путем специальной обработки получают резину.

Натуральный (природный) каучук представляет собой высокомолекулярный непредельный углеводород, молекулы которого содержат большое количество двойных связей, состав его может быть выражен формулой (С 6 Н 8) n (где величина n составляет от 1000 до 3000); он является полимером изопрена:

n СН 2 =С─СН=СН 2 → ─ СН 2 ─С=СН─СН 2 ─

СН 3 СН 3 n

натуральный каучук (полиизопрен)

В настоящее время производится много различных видов синтетических каучуков. Первый синтезированный каучук (способ предложен Лебедевым С.В. в 1928 г.) - полибутадиеновый каучук:

n СН 2 =СН─СН=СН 2 → (─СН 2 ─СН=СН─СН 2 ─) n

По характеру углеводородных заместителей амины делят на

Общие особенности строения аминов

Также как и в молекуле аммиака, в молекуле любого амина атом азота имеет неподеленную электронную пару, направленную в одну из вершин искаженного тетраэдра:

По этой причине у аминов как и у аммиака существенно выражены основные свойства.

Так, амины аналогично аммиаку обратимо реагируют с водой, образуя слабые основания:

Связь катиона водорода с атомом азота в молекуле амина реализуется с помощью донорно-акцепторного механизма за счет неподеленной электронной пары атома азота. Предельные амины являются более сильными основаниями по сравнению с аммиаком, т.к. в таких аминах углеводородные заместители обладают положительным индуктивным (+I) эффектом. В связи с этим на атоме азота увеличивается электронная плотность, что облегчает его взаимодействие с катионом Н + .

Ароматические амины, в случае если аминогруппа непосредственно соединена с ароматическим ядром, проявляют более слабые основные свойства по сравнению с аммиаком. Связано это с тем, что неподеленная электронная пара атома азота смещается в сторону ароматической π-системы бензольного кольца в следствие чего, электронная плотность на атоме азота снижается. В свою очередь это приводит к снижению основных свойств, в частности способности взаимодействовать с водой. Так, например, анилин реагирует только с сильными кислотами, а с водой практически не реагирует.

Химические свойства предельных аминов

Как уже было сказано, амины обратимо реагируют с водой:

Водные растворы аминов имеют щелочную реакцию среды, вследствие диссоциации образующихся оснований:

Предельные амины реагируют с водой лучше, чем аммиак, ввиду более сильных основных свойств.

Основные свойства предельных аминов увеличиваются в ряду.

Вторичные предельные амины являются более сильными основаниями, чем первичные предельные, которые являются в свою очередь более сильными основаниями, чем аммиак. Что касается основных свойств третичных аминов, то то если речь идет о реакциях в водных растворах, то основные свойства третичных аминов выражены намного хуже, чем у вторичных аминов, и даже чуть хуже чем у первичных. Связано это со стерическими затруднениями, существенно влияющими на скорость протонирования амина. Другими словами три заместителя «загораживают» атом азота и мешают его взаимодействию с катионами H + .

Взаимодействие с кислотами

Как свободные предельные амины, так и их водные растворы вступают во взаимодействие с кислотами. При этом образуются соли:

Так как основные свойства предельных аминов сильнее выражены, чем у аммиака, такие амины реагируют даже со слабыми кислотами, например угольной:

Соли аминов представляют собой твердые вещества, хорошо растворимые в воде и плохо в неполярных органических растворителях. Взаимодействие солей аминов с щелочами приводит к высвобождению свободных аминов, аналогично тому как происходит вытеснение аммиака при действии щелочей на соли аммония:

2. Первичные предельные амины реагируют с азотистой кислотой с образованием соответствующих спиртов, азота N 2 и воды. Например:

Характерным признаком данной реакции является образование газообразного азота, в связи с чем она является качественной на первичные амины и используется для их различения от вторичных и третичных. Следует отметить, что чаще всего данную реакцию проводят, смешивая амин не с раствором самой азотистой кислоты, а с раствором соли азотистой кислоты (нитрита) и последующим добавлением к этой смеси сильной минеральной кислоты. При взаимодействии нитритов с сильными минеральными кислотами образуется азотистая кислота, которая уже затем реагирует с амином:

Вторичные амины дают в аналогичных условиях маслянистые жидкости, так называемые N-нитрозаминами, но данная реакция в реальных заданиях ЕГЭ по химии не встречается. Третичные амины с азотистой кислотой не взаимодействуют.

Полное сгорание любых аминов приводит к образованию углекислого газа, воды и азота:

Взаимодействие с галогеналканами

Примечательно, что абсолютно такая же соль получается при действии хлороводорода на более замещенный амин. В нашем случае, при взаимодействии хлороводорода с диметиламином:

Получение аминов:

1) Алкилирование аммиака галогеналканами:

В случае недостатка аммиака вместо амина получается его соль:

2) Восстановление металлами (до водорода в ряду активности) в кислой среде:

с последующей обработкой раствора щелочью для высвобождения свободного амина:

3) Реакция аммиака со спиртами при пропускании их смеси через нагретый оксид алюминия. В зависимости от пропорций спирт/амин образуются первичные, вторичные или третичные амины:

Химические свойства анилина

Анилин – тривиальное название аминобензола, имеющего формулу:

Как можно видеть из иллюстрации, в молекуле анилина аминогруппа непосредственно соединена с ароматическим кольцом. У таких аминов, как уже было сказано, основные свойства выражены намного слабее, чем у аммиака. Так, в частности, анилин практически не реагирует с водой и слабыми кислотами типа угольной.

Взаимодействие анилина с кислотами

Анилин реагирует с сильными и средней силы неорганическими кислотами. При этом образуются соли фениламмония:

Взаимодействие анилина с галогенами

Как уже было сказано в самом начале данной главы, аминогруппа в ароматических аминах, втянута в ароматическое кольцо, что в свою очередь снижает электронную плотность на атоме азота, и как следствие увеличивает ее в ароматическом ядре. Увеличение электронной плотности в ароматическом ядре приводит к тому, что реакции электрофильного замещения, в частности, реакции с галогенами протекают значительно легче, особенно в орто- и пара- положениях относительно аминогруппы. Так, анилин с легкостью вступает во взаимодействие с бромной водой, образуя белый осадок 2,4,6-триброманилина:

Данная реакция является качественной на анилин и часто позволяет определить его среди прочих органических соединений.

Взаимодействие анилина с азотистой кислотой

Анилин реагирует с азотистой кислотой, но в виду специфичности и сложности данной реакции в реальном ЕГЭ по химии она не встречается.

Реакции алкилирования анилина

С помощью последовательного алкилирования анилина по атому азота галогенпроизводными углеводородов можно получать вторичные и третичные амины:

Получение анилина

1. Восстановление маталлами нитробензола в присутствии сильных кислот-неокислителей:

C 6 H 5 -NO 2 + 3Fe + 7HCl = +Cl- + 3FeCl 2 + 2H 2 O

Cl — + NaOH = C 6 H 5 -NH 2 + NaCl + H 2 O

В качестве металлов могут быть использованы любые металлы, находящиеся до водорода в ряду активности.

Реакция хлорбензола с аммиаком:

С 6 H 5 −Cl + 2NH 3 → C 6 H 5 NH 2 + NH 4 Cl

Химические свойства аминокислот

Аминокислотами называют соединения в молекулах которых присутствуют два типа функциональных групп – амино (-NH 2) и карбокси- (-COOH) группы.

Другими словами, аминокислоты можно рассматривать как производные карбоновых кислот, в молекулах которых один или несколько атомов водорода замещены на аминогруппы.

Таким образом, общую формулу аминокислот можно записать как (NH 2) x R(COOH) y , где x и y чаще всего равны единице или двум.

Поскольку в молекулах аминокислот есть и аминогруппа и карбоксильная группа, они проявляют химические свойства схожие как аминов, так и карбоновых кислот.

Кислотные свойства аминокислот

Образование солей с щелочами и карбонатами щелочных металлов

Этерификация аминокислот

Аминокислоты могут вступать в реакцию этерификации со спиртами:

NH 2 CH 2 COOH + CH 3 OH → NH 2 CH 2 COOCH 3 + H 2 O

Основные свойства аминокислот

1. Oбразование солей при взаимодействии с кислотами

NH 2 CH 2 COOH + HCl → + Cl —

2. Взаимодействие с азотистой кислотой

NH 2 -CH 2 -COOH + HNO 2 → НО-CH 2 -COOH + N 2 + H 2 O

Примечание: взаимодействие с азотистой кислотой протекает так же, как и с первичными аминами

3. Алкилирование

NH 2 CH 2 COOH + CH 3 I → + I —

4. Взаимодействие аминокислот друг с другом

Аминокислоты могут реагировать друг с другом образуя пептиды – соединения, содержащие в своих молекулах пептидную связь –C(O)-NH-

При этом, следует отметить, что в случае проведения реакции между двумя разными аминокислотами, без соблюдения некоторых специфических условий синтеза, одновременно протекает образование разных дипептидов. Так, например, вместо реакции глицина с аланином выше, приводящей к глицилананину, может произойти реакция приводящая к аланилглицину:

Кроме того, молекула глицина не обязательно реагирует с молекулой аланина. Протекают также и реакции пептизации между молекулами глицина:

И аланина:

Помимо этого, поскольку молекулы образующихся пептидов как и исходные молекулы аминокислот содержат аминогруппы и карбоксильные группы, сами пептиды могут реагировать с аминокислотами и другими пептидами, благодаря образованию новых пептидных связей.

Отдельные аминокислоты используются для производства синтетических полипептидов или так называемых полиамидных волокон. Так, в частности с помощью поликонденсации 6-аминогексановой (ε-аминокапроновой) кислоты в промышленности синтезируют капрон:

Получаемая в результате этой реакции капроновая смола используется для производства текстильных волокон и пластмасс.

Образование внутренних солей аминокислот в водном растворе

В водных растворах аминокислоты существуют преимущественно в виде внутренних солей — биполярных ионов (цвиттер-ионов):

Получение аминокислот

1) Реакция хлорпроизводных карбоновых кислот с аммиаком:

Cl-CH 2 -COOH + 2NH 3 = NH 2 -CH 2 -COOH + NH 4 Cl

2) Расщепление (гидролиз) белков под действием растворов сильных минеральных кислот и щелочей.

Используя данный видеоурок, все желающие смогут получить представление о теме "Азотсодержащие органические соединения". При помощи этого видеоматериала вы узнаете об органических соединениях, имеющих в своём составе азот. Учитель расскажет об азотосодержащих органических соединениях, их составе и свойствах.

Тема: Органические вещества

Урок: Азотсодержащие органические соединения

В большинстве природных органических соединений азот входит в состав NH 2 - аминогруппы. Органические вещества, молекулы которых содержат аминогруппу , называются аминами. Строение молекул аминов аналогично строению аммиака, и поэтому свойства этих веществ сходны.

Аминами называют производные аммиака, в молекулах которого один или несколько атомов водорода замещены углеводородными радикалами. Общая формула аминов - R - NH 2.

Рис. 1. Шаростержневые модели молекулы метиламина ()

Если замещен один атом водорода, то образуется первичный амин. Например, метиламин

(см. Рис. 1).

Если замещены 2 атома водорода, то образуется вторичный амин. Например, диметиламин

При замещении всех 3 атомов водорода в аммиаке, образуется третичный амин. Например, триметиламин

Разнообразие аминов определяется не только числом замещенных атомов водорода, но и составом углеводородных радикалов. С n Н 2 n +1 - N Н 2 - это общая формула первичных аминов.

Свойства аминов

Метиламин, диметиламин, триметиламин - это газы с неприятным запахом. Говорят, что они обладают запахом рыбы. Благодаря наличию водородной связи, они хорошо растворяются в воде, спирте, ацетоне. Из-за водородной связи в молекуле метиламина наблюдается и большое различие в температурах кипения метиламина (t кип.= -6,3 ° С) и соответствующего углеводорода метана CH 4 (t кип.= -161,5 ° С). Остальные амины являются жидкими или твердыми, при нормальных условиях, веществами, обладающие неприятным запахом. Только высшие амины практически не имеют запаха. Способность аминов вступать в реакции, подобные аммиаку, обусловлена также наличием в их молекуле «неподеленной» пары электронов (см. Рис. 2).

Рис. 2. Наличие у азота «неподеленной» пары электронов

Взаимодействие с водой

Щелочную среду в водном растворе метиламина можно обнаружить с помощью индикатора. Метиламин СН 3 - N Н 2 - тоже основание, но иного типа. Его основные свойства обусловлены способностью молекул присоединять катионы H + .

Суммарная схема взаимодействия метиламина с водой:

СН 3 - N Н 2 + Н-ОН → СН 3 - N Н 3 + + ОН -

МЕТИЛАМИН ИОН МЕТИЛ АММОНИЯ

Взаимодействие с кислотами

Подобно аммиаку, амины взаимодействуют с кислотами. При этом образуются твердые солеподобные вещества.

С 2 Н 5 - N Н 2 + НС l → С 2 Н 5 - N Н 3 + + С l -

ЭТИЛАМИН ХЛОРИД ЭТИЛ АММОНИЯ

Хлорид этиламмония хорошо растворяется в воде. Раствор этого вещества проводит электрический ток. При взаимодействии хлорида этиламмония со щелочью образуется этиламин.

С 2 Н 5 - N Н 3 + С l - + N аОН → С 2 Н 5 - N Н 2 + N аС l + Н 2 О

При горении аминов образуются не только оксиды углерода и вода, но и молекулярный азот .

4СН 3 - N Н 2 + 9О 2 → 4 СО 2 + 10 Н 2 О + 2 N 2

Смеси метиламина с воздухом взрывоопасны.

Низшие амины используют для синтеза лекарственных средств, пестицидов, а также при производстве пластмасс. Метиламин - токсичное соединение. Он раздражает слизистые оболочки, угнетает дыхание, отрицательно действует на нервную систему, внутренние органы.

Подведение итога урока

Вы узнали еще один класс органических веществ - амины. Амины относятся к азотсодержащим органическим соединениям. Функциональная группа аминов - NН 2 , называемая аминогруппой. Амины можно рассматривать как производные аммиака, в молекулах которого один или несколько атомов водорода замещены на углеводородный радикал. Рассмотрели химические и физические свойства аминов.

1. Рудзитис Г.Е. Неорганическая и органическая химия. 9 класс: Учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, 2009.

2. Попель П.П. Химия. 9 класс: Учебник для общеобразовательных учебных заведений / П.П. Попель, Л.С. Кривля. - К.: ИЦ «Академия», 2009. - 248 с.: ил.

3. Габриелян О.С. Химия. 9 класс: Учебник. - М.: Дрофа, 2001. - 224 с.

1. Рудзитис Г.Е. Неорганическая и органическая химия. 9 класс: Учебник для общеобразовательных учреждений: базовый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, 2009. - №№ 13-15 (с. 173).

2. Вычислите массовую долю азота в метиламине.

3. Напишите реакцию горения пропиламина. Укажите сумму коэффициентов продуктов реакции.