Азотсодержащие вещества. Изомерия и номенклатура

















































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  1. Актуализировать знания учащихся о природных полимерах на примере белков. Познакомить с составом, строением, свойствами и функциями белков.
  2. Способствовать развитию внимания, памяти, логического мышления, умению сравнивать и анализировать.
  3. Формирование интереса у учащихся к данной теме, коммуникативных качеств.

Тип урока: урок формирования новых знаний.

Образовательные ресурсы:

  1. Библиотека электронных наглядных пособий “Химия 8–11 классы”, разработчик “Кирилл и Мефодий”, 2005 г.
  2. Электронное издание “Химия 8-11. Виртуальная лаборатория”, разработчик Мар ГТУ, 2004 г.
  3. Электронное издание по курсу “Биотехнология”, разработчик “Новый диск”, 2003 г.

Материально-техническое оснащение, дидактическое обеспечение: Компьютер, проектор, экран. Презентация “Белок”. Учеб. Рудзитис Г.Е.Химия 10-й класс 2011 г., Учеб. Ю.И. Полянский. Общая биология.10–11-й класс. 2011 г.

Лабораторное оборудование и реактивы: Раствор белка, гидроксид натрия, ацетат свинца, сульфат меди, концентрированная азотная кислота, спиртовка, держатель, пробирки.

Ход урока

I. Организационный момент (3–5’)

II. Сообщение темы и цели урока (3–5’). (Слайд 1–2)

III. Объяснение материала по теме “Азотсодержащие органические соединения. Белки”.

1. Белки (Слайд 3 ). Изучение белка начинаем с высказывания биохимика Ж. Мюльдера “Во всех растениях и животных присутствует некое вещество, которое без сомнения является наиболее важным из всех известных веществ живой природы и без которого жизнь была бы на нашей планете невозможна”.

2. Определение белка (Слайд 4–6) учащиеся обсуждают и записывают в тетрадь.

Слайд 4. Определение белков. Белки – азотсодержащие высокомолекулярные органические вещества со сложным составом и строением молекул.

Слайд 5. Белки наряду с углеводами и жирами являются основной составной частью нашей пищи.

Слайд 6. Белок – высшая форма развития органических веществ. С белками связаны все жизненные процессы. Белки входят в состав клеток и тканей всех живых организмов. Содержание белков в различных клетках может колебаться от 50 до 80%.

3. История белка (Слайд 7–11). Знакомство с первыми исследователями белка (Якопо Бартоломео Беккари, Франсуа Кене, Антуана Франсуа де Фуркруа).

Слайд 7. Название белки получили от яичного белка. В древнем Риме яичный белок применялся как лечебное средство. Подлинная история белков начинается, когда появляются первые сведения об их свойствах.

Слайд 6. Впервые белок был выделен (в виде клейковины) в 1728 г. итальянцем Я.Б. Беккари из пшеничной муки. Это событие принято считать рождением химии белка. Вскоре обнаружили, что сходные соединения находятся во всех органах не только растений, но и животных. Этот факт очень удивил ученых, привыкших делить вещества на соединения “животного и растительного мира”. Общим свойством новых веществ оказалось то, что при нагревании они выделяли вещества основного характера – аммиак и амины.

Слайд 9. 1747 год – французский физиолог Ф.Кене впервые применил термин “белковый” к жидкостям живого организма.

Слайд 10. 1751 год термин белковый вошел в “Энциклопедию” Д.Дидро и Ж.Аламбера.

4. Состав белка (Слайд 12) учащиеся записывают в тетрадь.

Слайд 12. Состав белков. Элементарный состав белка колеблется незначительно (в % на сухую массу): C – 51–53%, O – 21,5–23,5%, N – 16,8–18,4%, H – 6,5–7,3%, S – 0,3–2,5%. Некоторые белки содержат P, Se и др.

5. Строение белка (Слайд 13–15).

Слайд 13. Белки – природные полимеры, молекулы которых построены из остатков аминокислот соединенных пептидной связью. В инсулине 51 остаток, в миоглобине 140.

Относительная молекулярная масса белков очень большая, колеблется от 10 тысяч до многих миллионов. Например: инсулин – 6500, белок куриного яйца – 360 000, а одного из белков мышц достигает 150000.

Слайд 14. В природе обнаружено свыше 150 аминокислот, но только около 20 аминокислот входит в состав белков.

Слайд 15. Учащиеся повторяют определение, название и строение аминокислот. Аминокислотами называют азотсодержащие органические соединения, в молекулах которых содержатся аминогруппы – NН 3 и карбоксильные группы – СООН.

Аминокислоты можно рассматривать как производные карбоновых кислот, у которых атом водорода в радикале замещен на аминогруппу.

6. Пептидная теория строения белка (Слайд 16–19). Вопрос учащимся Что называется пептидной связью?

Пептидная связь – это связь образующая между остатком – NН – аминогруппы одной молекулы аминокислоты и остатком – СО – карбоксильной группы другой молекулы аминокислоты.

Слайд 16. К началу ХIХ века появляются новые работы по химическому изучению белков. Фишер Эмиль Герман в1902году предложил пептидную теорию строения белка, экспериментально доказал, что аминокислоты связываются, образуя соединения, названные им полипептидами. Лауреат Нобелевской премии 1902 года.

Слайд 17. Белки включают несколько сотен, а иногда тысяч комбинаций основных аминокислот. Порядок их чередования самый разнообразный. Каждая аминокислота может встречаться в белке несколько раз. Для белка, состоящего из 20 остатков аминокислот теоретически возможно около 2х10 18 вариантов (один из вариантов).

Слайд 18. Полимер, состоящий из аминокислот (второй вариант).

19 Слайд. Цепь, состоящую из большого числа соединенных друг с другом аминокислотных остатков называют полипептидной. В ее состав входят десятки и сотни аминокислотных остатков. У всех белков полипептидный остов одинаков. На один виток спирали приходится 3,6 аминокислотных остатка.

7. Классификация белков (Слайд20). Сообщение учащегося на тему “Несколько классификаций белков”. (Приложение 2) .

8. Структура белковой молекулы (Слайд 21–29). При изучении состава белков было установлено, что все белки построены по единому принципу и имеют четыре уровня организации. Учащиеся слушают , обсуждают и записывают определение структур белковой молекулы.

Слайд 21. Структура белковой молекулы. В первой половине 19 века выяснилось, что белки составляют неотъемлемую часть всех без исключения живых веществ на Земле. Открытие аминокислот, исследование свойств и методов получения пептидов явились ступенькой к установлению структуры белковых молекул. При изучении состава белков было установлено, что все они построены по единому принципу и имеют четыре уровня организации: первичную, вторичную, третичную, а отдельные из них и четвертичную структуры.

Слайд 22. Первичная структура белка. Представляет собой линейную цепь аминокислотных остатков, расположенных в определенной последовательности и соединенных между собой пептидными связями. Число аминокислотных звеньев в молекуле может колебаться от нескольких десятков до сотен тысяч. Это отражается на молекулярной массе белков, изменяющейся в широких пределах: от 6500 (инсулин) до 32 миллионов (белок вируса гриппа). Первичная структура белковой молекулы играет чрезвычайно важную роль. Изменение только одной аминокислоты на другую может привести либо к гибели организма, либо к появлению совершенно нового вида.

Слайд 23. Повторение механизма образования пептидной связи.

Учащиеся получают задание: Составить уравнение реакции получения дипептида из любых двух аминокислот из предложенного списка (прилагается таблица аминокислот). Проверка выполненного задания.

Слайд 24. Данилевский А.Я. – русский биохимик, академик. Один из основоположников отечественной биохимии. Работал в области ферментов и белков. В 1888 г. Данилевский А.Я. предложил теорию строения белковой молекулы (существование в белках пептидных связей). Экспериментально доказал, что под действием сока поджелудочной железы белки подвергаются гидролизу. Изучал белки мышц (миозин), обнаружил антипепсин и антитрипсин.

Слайд 25. Вторичная структура белка – скрученная в спираль полипептидная цепь. Она удерживается в пространстве за счет образования многочисленных водородных связей между группами – СО – и – NH –, расположенных на соседних витках спирали. Существует два класса таких структур – спиралевидные и складчатые. Все они стабилизируются за счет водородных связей. Полипептидная цепь может быть закручена в спираль, на каждом витке которой располагается 3,6 звена аминокислот с обращенными наружу радикалами. Отдельные витки скреплены между собой водородными связями между группами различных участков цепи. Такая структура белка называется – спираль и наблюдается, к примеру, у кератина (шерсть, волосы, рога, ногти). Если боковые группы аминокислотных остатков не очень велики (глицин, аланин, серин), две полипептидные цепи могут быть расположены параллельно и скрепляться между собой водородными связями. При этом полоса получается не плоской, а складчатой. Это – структура белка, характерная, например, для фиброина шелка.

Слайд 26. В 1953 г. Л. Полинг разработал модель вторичной структуры белка. В 1954 году ему была присуждена Нобелевская премия по химии. В 1962 году – Нобелевская премия мира.

Слайд 27. Третичная структура – это способ расположения спирали или структуры в пространстве. Это реальная трехмерная конфигурация закрученной в пространстве спирали полипептидной цепи (т. е. спираль, скрученная в спираль).

Слайд 28. Третичная структура поддерживается связями, возникающими между функциональными группами радикалов – дисульфидные мостики (–S–S–) между атомами серы (между двумя остатками цистеина различных участков цепи), – сложноэфирные мостики между карбоксильной группой (–COOH) и гидроксильной группой (–OH), – солевые мостики между карбоксильной группой (–COOH) и аминогруппой (–NH 2). По форме белковой молекулы, которая определяется третичной структурой, выделяют глобулярные белки (миоглобин) и фибриллярные (кератин волоса), которые выполняют в организме структурную функцию.

Слайд 29. Четвертичная структура – форма взаимодействия между несколькими полипептидными цепями. Между собой полипептидные цепи соединяются водородными, ионными, гидрофобными и др. связями. Сообщение учащегося по теме “Четвертичная структура белковой молекулы”. (Приложение 3) .

9. Химические свойства белков (Слайд 30). Из химических свойств рассматриваем следующие свойства: денатурацию, гидролиз и цветные реакции на белок.

Слайд 30. Свойства белков многообразны: некоторые белки – твердые вещества, нерастворимые в воде и солевых растворах; большинство белков – жидкие или студнеобразные, растворимые в воде вещества (например, альбумин – белок куриного яйца). Протоплазма клеток состоит из коллоидного белка.

Слайд 31. Денатурация белков – разрушение вторичной, третичной и четвертичной структур белковой молекулы под действием внешних факторов. Обратимая денатурация возможна в растворах солей аммония, калия и натрия. Под действием солей тяжелых металлов происходит необратимая денатурация. Поэтому для организма крайне вредны пары тяжелых металлов и их солей. Для дезинфекции, консервирования и пр. используют формалин, фенол, этиловый спирт действие которых также приводят к необратимой денатурации. Белок при денатурации утрачивает ряд важнейших функций живой структуры: ферментативные, каталитические, защитные и др.

10. Денатурация белков (Слайд 31–32). Денатурация белков – разрушение вторичной, третичной и четвертичной структур белковой молекулы под действием внешних факторов. (Учащиеся записывают определение в тетрадь)

Слайд 32. Денатурация белков. Факторы вызывающие денатурацию: температура, механическое воздействие, действие химических веществ и др.

11. Виртуальная лабораторная работа (Слайд 33–35). Просмотр видео фильма и обсуждение.

Слайд 33. Опыт №1. Обратимая денатурация белка. К раствору белка добавляют насыщенный раствор сульфата аммония. Раствор мутнеет. Произошла денатурация белка. В пробирке осадок белка. Этот осадок можно опять растворить если несколько капель мутного раствора добавить в воду и раствор помешать. Осадок растворяется.

Слайд 34. Опыт №2. Необратимая денатурация белка. Нальем в пробирку белок и нагреем его до кипения. Прозрачный раствор мутнеет. Происходит выпадение в осадок свернувшегося белка. При воздействии на белки высокой температуры происходит необратимое свертывание белка.

Слайд 35. Опыт №3. Необратимая денатурация белка под действием кислот. В пробирку с азотной кислотой добавить осторожно раствор белка. На границе двух растворов появилось кольцо свернувшегося белка. При встряхивании пробирки количество свернувшегося белка увеличилось. Происходит необратимое свертывание белка.

12. Цветные реакции белков (Слайд 36). Демонстрация опытов :

  1. Биуретовая реакция.
  2. Ксантопротеиновая реакция.
  3. Качественное определение серы в белках.

1) Биуретовая реакция. При действии на белки свежеполученного осадка гидроксида меди в щелочной среде возникает фиолетовое окрашивание. Из цветных реакций на белки наиболее характерна биуретовая т. к. пептидные связи белков дают комплексное соединение с ионами меди (II).

2) Ксантопротеиновая реакция (взаимодействие ароматических циклов радикалов с концентрированной азотной кислотой). При действии на белки концентрированной азотной кислотой образуется белый осадок, который при нагревании желтеет, а при добавлении раствора аммиака становится оранжевым.

3) Качественное определение серы в белках. Если к раствору белков прилить ацетат свинца, а затем гидроксида натрия и нагреть, то выпадает черный осадок, что указывает на содержание серы.

13. Гидролиз белков (Слайд 37–38). Виды гидролиза белка учащиеся анализируют и записывают в тетрадь.

Слайд 37. Гидролиз белков одно из важнейших свойств белков. Происходит в присутствии кислот, оснований или ферментов. Для полного кислотного гидролиза нужно кипятить белок соляной кислотой в течение 12-70 часов. В организме полный гидролиз белков происходит в очень мягких условиях под действием протолитических ферментов. Важно обратить внимание учащихся на то, что конечным продуктом гидролиза белков являются аминокислоты.

Слайд 38. Виды гидролиза белка. Каждый вид организмов, каждый орган и ткань содержат свои характерные белки, и при усвоении белков пищи организм расщепляет их до отдельных аминокислот, из которых организм создает собственные белки. Расщепление белков осуществляется в пищеварительных органах человека и животных (желудке и тонком кишечнике) под действием пищеварительных ферментов: пепсина (в кислой среде желудка) и трипсина, хемотрипсина, дипептидазы (в слабощелочной – pH 7,8 среде кишечника). Гидролиз – основа процесса пищеварения. В организм человека ежедневно должно поступать с пищей 60 80 г белка. В желудке под действием ферментов и соляной кислоты белковые молекулы распадаются на “кирпичики” аминокислоты. Попадая в кровь, они разносятся по всем клеткам организма, где участвуют в строительстве собственных белковых молекул, свойственных только данному виду.

14. Исследования в области изучения белков в 19 веке (Слайд 39–42). Открытия ученых – химиков Ф. Сэнгера, М.Ф.Перуц и Д.К. Кендырю.

Слайд 39. Учеными полностью определена структура некоторых белков: гормона инсулина, антибиотика грамицидина, миоглобина, гемоглобина и т. д.

Слайд 40. В 1962 г. М.Ф. Перуц и Д.К. Кендырю были удостоены Нобелевской премии за исследования в области изучения белков.

Слайд 41. Молекула гемоглобина (Mr = (C 738 H 1166 O 208 S 2 Fe) = 68000) построена из четырех полипептидных цепей (Mr = 17000 каждая). При соединении с кислородом молекула изменяет свою четвертичную структуру, захватывая кислород.

Слайд 42. В 1954 г. Ф. Сэнгер расшифровал аминокислотную последовательность в инсулине (через 10 лет он был синтезирован). Ф. Сенгер – английский биохимик. С 1945 года он приступил к изучению природного белка инсулина. Этот гормон поджелудочной железы регулирует в организме содержание глюкозы в крови. Нарушение синтеза инсулина приводит к сбою углеводного обмена и тяжелому заболеванию – сахарному диабету. Воспользовавшись всеми доступными ему методами и проявив огромное искусство, Ф. Сенгер расшифровал строение инсулина. Оказалось, что он состоит из двух полипептидных цепей длиной 21 и 30 остатков аминокислот, соединенных между собой в двух местах дисульфидными мостиками цистеиновых фрагментов. Работа потребовала долгих девяти лет. В 1958 г. ученому была присуждена Нобелевская премия “за работы по структуре протеинов, особенно инсулина”. На основе открытия Ф. Сенгера в 1963 г был завершен первый синтез инсулина из отдельных аминокислот. Это был триумф синтетической органической химии.

15. Функции белков (Слайд 43). Проводится самостоятельная работа учащихся с учебником Ю.И. Полянского. Общая биология стр.43-46. Задание для учащихся: записать в тетрадь функции белков.

Слайд 43. Проверка и закрепление выполненного задания.

16. Белки как компонент пищи животных и человека (Слайд 44–49). Пищевая ценность белков определяется содержанием в них незаменимых аминокислот.

Слайд 44. При полном расщеплении 1 грамма белка освобождается 17,6 кДж энергии.

Сообщение учащегося на тему: “Белки – источник незаменимых аминокислот в организме” (Приложение 4).

46 Слайд. Менее ценны растительные белки. Они беднее лизином, метионином, триптофаном, труднее перевариваются в желудочно-кишечном тракте.

В процессе пищеварения белки расщепляются до свободных аминокислот, которые после всасывания в кишечнике поступают в кровь и разносятся ко всем клеткам.

47 Слайд. Полноценные и неполноценные белки. Полноценные белки – это те, в состав которых входят все незаменимые аминокислоты. Неполноценные белки содержат не все незаменимые аминокислоты.). Сообщение учащегося на тему – “Энергетическая ценность некоторых продуктов”. (Приложение 6) .

17. Значение белков (Слайд 48–49).

Слайд 48. Белки – обязательная составная часть всех живых клеток, играют исключительно важную роль в живой природе, являются главным, наиболее ценным и незаменимым компонентом питания. Белки являются основой структурных элементов и тканей, поддерживают обмен веществ и энергии, участвуют в процессах роста и размножения, обеспечивают механизмы движений, развитие иммунных реакций, необходимы для функционирования всех органов и систем организма.

Слайд 49. Завершаем изучение темы определением жизни Ф. Энгельса “Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка”.

IV. Разбор домашнего задания: Химия. Г.Е.Рудзитис, стр. 158–162 изучить материал.

V. Подведение итогов урока.

Литература:

  1. Баранова Т.А. Правильное питание. – М.: Интербук, 1991. – С. 78–80.
  2. Волков В.А., Вонский Е.В., Кузнецова Г.И. Выдающиеся химики мира. – М.: ВШ, 1991. 656 с.
  3. Габриелян О.С. Химия. Учеб.10 кл. для общеобразоват. учреждений – М.: Дрофа, 2007.
  4. Горковенко М.Ю. Поурочные разработки по химии. – М.: Вако, 2006. С. 270–274.
  5. Полянский Ю.И. Общая биология. Учеб.10–11 класс. 2011г.
  6. Рудзитис Г.Е. Химия: Органическая химия. Учеб. 10 кл. для общеобразоват. учреждений. – М.: Просвещение, 2011 – стр.158–162.
  7. Фигуровский Н.А. Очерк общей истории химии. От древнейших времен до начала XIX века. – М.: Наука, 1969. 455 с.
  8. Интернет-ресурсы.

Нитросоединения. Нитросоединениями называются органические вещества, в молекулах которых содержится нитрогруппа - NO 2 при атоме углерода.

Их можно рассматривать как производные углеводородов, получающиеся путем замещения атома водорода на нитрогруппу. По числу нитрогрупп различают моно-, ди- и полинитросоединения.

Названия нитросоединемий производят от названий исходных углеводородов с добавлением приставки нитро-:

Общая формула этих соединений R-NO 2 .

Введение в органическое вещество нитрогруппы называется нитрованием. Его можно проводить разными способами. Нитрование ароматических соединений легко осуществимо при действии смесью концентрированных азотной и серной кислот (первая - нитрующий агент, вторая - водоотнимающий):

Тринитротолуол хорошо известен как взрывчатое вещество. Взрывается только от детонации. Горит коптящим пламенем без взрыва.

Нитрование предельных углеводородов проводится при действии на углеводороды разбавленной азотной кислотой при нагревании и повышенном давлении (реакция М.И. Коновалова):

Нитросоединения часто также получают взаимодействием алкил-галогенидов с нитритом серебра:

При восстановлении нитросоединений образуются амины.

Атомы других элементов, входящие в состав гетероцикла, называются гетероатомами. Наиболее часто встречаются в составе гетероциклов гетероатомы азота, кислорода, серы, хотя могут существовать гетероциклические соединения с самыми различными элементами, имеющими валентность не менее двух.

Гетероциклические соединения могут иметь в цикле 3, 4, 5, 6 и более атомов. Однако наибольшее значение имеют пяти- и шестичленные гетероциклы . Эти циклы, как и в ряду карбоциклических соединений, образуются наиболее легко и отличаются наибольшей прочностью. В гетероцикле может содержаться один, два и более гетероатомов.

Во многих гетероциклических соединениях электронное строение связей в кольце такое же, как и в ароматических соединениях. Поэтому типичные гетероциклические соединения условно обозначают не только формулами, содержащими чередующиеся двойные и одинарные связи, но и формулами, в которых сопряжение p -электронов обозначается кружком, вписанным в формулу.

Для гетероциклов обычно пользуются эмпирическими названиями.

Пятичленные гетероциклы

Шестичленные гетероциклы

Большое значение имеют гетероциклы, конденсированные с бензольным кольцом или с другим гетероциклом, например пурин:

Шестичленные гетероциклы. Пиридин C 5 H 5 N - простейший шестичленный ароматический гетероцикл с одним атомом азота. Его можно рассматривать как аналог бензола, в котором одна группа СН заменена на атом азота:

Пиридин представляет собой бесцветную жидкость, немного легче воды, с характерным неприятным запахом; с водой смешивается в любых отношениях. Пиридин и его гомологи выделяют из каменноугольной смолы. В лабораторных условиях пиридин можно синтезировать из синильной кислоты и ацетилена:

Химические свойства пиридина определяются наличием ароматической системы, содержащей шесть p -электронов, и атома азота с неподеленной электронной парой.

1. Основные свойства. Пиридин - более слабое основание, чем алифатические амины. Его водный раствор окрашивает лакмус в синий цвет:

При взаимодействии пиридина с сильными кислотами образуются соли пиридиния:

2. Ароматические свойства. Подобно бензолу, пиридин вступает в реакции электрофильного замещения, однако, его активность в этих реакциях ниже, чем бензола, из-за большой электроотрицательности атома азота. Пиридин нитруется при 300 ° С с низким выходом:

Атом азота в реакциях электрофильного замещения ведет себя как заместитель 2-го рода, поэтому электрофильное замещение происходит в мета- положение.

В отличие от бензола пиридин способен вступать в реакции нуклеофильного замещения, поскольку атом азота оттягивает на себя электронную плотность из ароматической системы и орто-пара- положения по отношению к атому азота обеднены электронами. Так, пиридин может реагировать с амидом натрия, образуя смесь орто- и пара- аминопиридинов (реакция Чичибабина):

При гидрировании пиридина ароматическая система разрушается и образуется пиперидин, который представляет собой циклический вторичный амин и является гораздо более сильным основанием, чем пиридин:

Пиримидин C 4 H 4 N 2 - шестичленный гетероцикл с двумя атомами азота. Его можно рассматривать как аналог бензола, в котором две группы СН заменены на атомы азота:

Благодаря наличию в кольце двух электроотрицательных атомов азота пиримидин еще менее активен в реакциях электрофильного замещения, чем пиридин. Его основные свойства также выражены слабее, чем у пиридина.

Основное значение пиримидина состоит в том, чтоонявляется родоначальником класса пиримидиновых оснований.

Пиримидиновые основания - производные пиримидина, остатки которых входят в состав нуклеиновых кислот: урацил, тимин, цитозин.

Каждое из этих оснований может существовать в двух формах. В свободном состоянии основания существуют в ароматической форме, а в состав нуклеиновых кислот они входят в NH-форме.

Соединения с пятичленным циклом. Пиррол C 4 H 4 NH - пятичленныи гетероцикл с одним атомом азота.

Ароматическая система содержит шесть p -электронов (по одному от четырех атомов углерода и пара электронов атома азота). В отличие от пиридина электронная пара атома азота в пирроле входит в состав ароматической системы, поэтому пиррол практически лишен основных свойств.

Пиррол - бесцветная жидкость с запахом, напоминающим запах хлороформа. Пиррол слабо растворим в воде (< 6%), но растворим в органических растворителях. На воздухе быстро окисляется и темнеет.

Пиррол получают конденсацией ацетилена с аммиаком:

или аммонолизом пятичленных циклов с другими гетероатомами (реакция Юрьева):

Сильные минеральные кислоты могут вытягивать электронную пару атома азота из ароматической системы, при этом ароматичность нарушается и пиррол превращается в неустойчивое соединение, которое сразу полимеризуется. Неустойчивость пиррола в кислой среде называется ацидофобностью .

Пиррол проявляет свойства очень слабой кислоты. Он реагирует с калием, образуя пиррол-калий:

Пиррол, как ароматическое соединение, склонен к реакциям электрофильного замещения, которые протекают преимущественно у a -атома углерода (соседнего с атомом азота).

При гидрировании пиррола образуется пирролидин - циклический вторичный амин, проявляющий основные свойства:

Пурин - гетероцикл, включающий два сочлененных цикла: пиридиновый и имидазольный:

Ароматическая система пурина включает десять p -электронов (восемь электронов двойных связей и два электрона пиррольного атома азота). Пурин - амфотерное соединение. Слабые основные свойства пурина связаны с атомами азота шестичленного цикла, а слабые кислотные свойства - с группой NH пятичленного цикла.

Основное значение пурина состоит в том, что он является родоначальником класса пуриновых оснований.

Пуриновые основания - производные пурина, остатки которых входят в состав нуклеиновых кислот: аденин, гуанин.

Нуклеиновые кислоты. Нуклеиновые кислоты - это природные высокомолекулярные соединения (полинуклеотиды), которые играют огромную роль в хранении и передаче наследственной информации в живых организмах. Молекулярная масса нуклеиновых кислот может меняться от сотен тысяч до десятков миллиардов. Они были открыты и выделены из клеточных ядер еще в XIX в., однакоих биологическая роль была выяснена только во второй половине XX в.

Строение нуклеиновых кислот можно установить, анализируя продукты их гидролиза. При полном гидролизе нуклеиновых кислот образуется смесь пиримидиновых и пуриновых оснований, моносахарид (b -рибоза или b -дезоксирибоза) и фосфорная кислота. Это означает, что нуклеиновые кислоты построены из фрагментов этих веществ.

При частичном гидролизе нуклеиновых кислот образуется смесь нуклеотидов, молекулы которых построены из остатков фосфорной кислоты, моносахарида (рибозы или дезоксирибозы) и азотистого основания (пуринового или пиримидинового). Остаток фосфорной кислоты связан с 3-м или 5-м атомом углерода моносахарида, а остаток основания - с первым атомом углерода моносахарида. Общие формулы нуклеотидов:

где Х=ОН для рибонуклеотидов, построенных на основе рибозы, и Х==Н для дезоксирибонуклеотидов, построенных на основе дезоксирибозы. В зависимости от типа азотистого основания различают пуриновые и пиримидиновые нуклеотиды.

Нуклеотид - основная структурная единица нуклеиновых кислот, их мономерное звено. Нуклеиновые кислоты, состоящие из рибонуклеотидов, называют рибонуклеиновыми кислотами (РНК). Нуклеиновые кислоты, состоящие из дезоксирибонуклеотидов, называют дезоксирибонуклеиновыми кислотами (ДНК). В состав молекул РНК входят нуклеотиды, содержащие основания аденин, гуанин, цитозин и урацил. В состав молекул ДНК входят нуклеотиды, содержащие аденин, гуанин, цитозин и тимин. Для обозначения оснований используют однобуквенные сокращения: аденин - А, гуанин - G, тимин - Т, цитозин -С, урацил - U.

Свойства ДНК и РНК определяются последовательностью оснований в полинуклеотидной цепи и пространственным строением цепи. Последовательность оснований содержит генетическую информацию, а остатки моносахаридов и фосфорной кислоты играют структурную роль (носители, оснований).

При частичном гидролизе нуклеотидов отщепляется остаток фосфорной кислоты и образуются нуклеозиды, молекулы которых состоят из остатка пуринового или пиримидинового основания, связанного с остатком моносахарида - рибозы или дезоксирибозы. Структурные формулы основных пуриновых и пиримидиновых нуклеозидов:

Пуриновые нуклеозиды:

Пиримидиновые нуклеозиды:

В молекулах ДНК и РНК отдельные нуклеотиды связаны в единую полимерную цепь за счет образования сложноэфирных связей между остатками фосфорной кислоты и гидроксильными группами при 3-м и 5-м атомах углерода моносахарида:

Пространственная структура полинуклеотидных цепей ДНК и РНК была определена методом рентгено-структурного анализа. Одним из самых крупных открытий биохимии XX в. оказалась модель двухспиральной структуры ДНК, которую предложили в 1953 г. Дж. Уотсон и Ф. Крик. Согласно этой модели, молекула ДНК представляет собой двойную спираль и состоит из двух полинуклеотидных цепей, закрученных в противоположные стороны вокруг общей оси. Пуриновые и пиримидиновые основания расположены внутри спирали, а остатки фосфата и дезоксирибозы - снаружи. Две спирали удерживаются вместе водородными связями между парами оснований. Важнейшее свойство ДНК - избирательность в образовании связей (комплементарность). Размеры оснований и двойной спирали подобраны в природе таким образом, что тимин (Т) образует водородные связи только с аденином (А), а цитозин (С) - только с гуанином (G).

Таким образом, две спирали в молекуле ДНК комплементарны друг другу. Последовательность нуклеотидов в одной из спиралей однозначно определяет последовательность нуклеотидов в другой спирали.

В каждой паре оснований, связанных водородными связями, одно из оснований - пуриновое, а другое - пиримидиновое. Отсюда следует, что общее число остатков пуриновых оснований в молекуле ДНК равно числу остатков пиримидиновых оснований.

Длина полинуклеотидных цепей ДНК практически неограниченна. Число пар оснований в двойной спирали может меняться от нескольких тысяч у простейших вирусов до сотен миллионов у человека.

В отличие от ДНК молекулы РНК состоят из одной полинуклеотидной цепи. Число нуклеотидов в цепи колеблется от 75 до нескольких тысяч, а молекулярная масса РНК может изменяться в пределах от 2500 до нескольких миллионов. Полинуклеотидная цепь РНК не имеет строго определенной структуры.

Биологическая роль нуклеиновых кислот. ДНК- главная молекула в живом организме. Она хранит генетическую информацию, которую передает от одного поколения к другому. В молекулах ДНК в закодированном виде записан состав всех белков организма. Каждой аминокислоте, входящей в состав белков, соответствует свой код в ДНК, т. е. некоторая последовательность азотистых оснований.

ДНК содержит всю генетическую информацию, но непосредственно в синтезе белков не участвует. Роль посредника между ДНК и местом синтеза белка выполняет РНК. Процесс синтеза белка на основе генетической информации схематично можно разбить на две основные стадии: считывание информации (транскрипция) и синтез белка (трансляция).

1. Информационная, или матричная. РНК (ее обозначают мРНК) считывает и переносит генетическую информацию от ДНК, содержащейся в хромосомах, к рибосо-мам, где происходит синтез белка со строго определенной последовательностью аминокислот.

2. Транспортная РНК (тРНК) переносит аминокислоты к рибосомам, где они соединяются пептидной связью в определенной последовательности, которую задает мРНК.

3. Рибосомная РНК (рРНК) непосредственно участвует в синтезе белков в рибосомах. Рибосомы - это сложные надмолекулярные структуры, которые состоят из четырех рРНК и нескольких десятков белков . Фактически рибосомы - это фабрики по производству белков.

Все виды РНК синтезируются на двойной спирали ДНК.

Последовательность оснований в мРНК - это генетический код, управляющий последовательностью аминокислот в белках. Он был расшифрован в 1961-1966 гг. Замечательная особенность генетического кода состоит в том, что он универсален для всех живых организмов. Одинаковым основаниям в разных РНК (будь то РНК человека или вируса) соответствуют одинаковые аминокислоты. Каждой аминокислоте соответствует своя последовательность из трех оснований, называемая кодоном. Некоторые аминокислоты кодируются несколькими кодонами. Так, лейцину, серину и аргинину соответствует по шесть кодонов, пяти аминокислотам - по четыре кодона, изолейцину - три кодона, девяти аминокислотам - по два кодона, а метионину и триптофану - по одному. Три кодона являются сигналами для прекращения синтеза полипептидной цепи и называются кодонами-терминаторами.

Амины. Амины - органические соединения, которые можно рассматривать как производные аммиака, в котором атомы водорода (один или несколько) замещены на углеводородные радикалы.

В зависимости от природы радикала амины могут быть алифатическими (предельными и непредельными), алициклическими, ароматическими, гетероциклическими. Они подразделяются на первичные, вторичные, третичные в зависимости от того, сколько атомов водорода замещено на радикал.

Четвертичные аммониевые соли типа + Cl- - это органические аналоги неорганических аммониевых солей.

Названия первичных аминов обычно производят от названий соответствующих углеводородов, добавляя к ним приставку амино- или окончание -амин . Названия вторичных и третичных аминов чаще всего образуют по принципам рациональной номенклатуры, перечисляя имеющиеся в соединении радикалы:

первичные R-NH 2:СН 3 -NH 2 - метиламин; С 6 Н 5 -NH 2 - фениламин;

вторичные R-NH-R": (CH 2)NH - диметиламин; С 6 Н 5 -NH-СН 3 -метилфениламин;

третичные R-N(R")-R": (СН 3) 3 Н - триметиламин; (C 6 H 5) 3 N - трифениламин.

Получение. 1. Нагревание алкилгалогенидов с аммиаком под давлением приводит к последовательному алкилированию аммиака, при этом образуется смесь солей первичных, вторичных и третичных аминов, которые дегидрогалогенируются при действии оснований:

2. Ароматические амины получают восстановлением нитросоединений:

Для восстановления можно использовать цинк или железо в кислой среде или алюминий в щелочной среде.

3. Низшие амины получают, пропуская смесь спирта и аммиака над поверхностью катализатора:

Физические свойства. Простейшие алифатические амины при нормальных условиях представляют собой газы или жидкости с низкой температурой кипения, обладающие резким запахом. Все амины являются полярными соединениями, что приводит к образованию водородных связей в жидких аминах, и следовательно, температурыих кипения превышают температуры кипения соответствующих алканов. Первые представители ряда аминов растворяются в воде, по мере роста углеродного скелета их растворимость в воде уменьшается. Амины растворимы также в органических растворителях.

Химические свойства. 1. Основные свойства. Будучи производными аммиака, все амины обладают основными свойствами, причем алифатические амины являются более сильными основаниями, чем аммиак, а ароматические - более слабыми. Это объясняется тем, что радикалы СН 3 -, С 2 Н 5 - и др. проявляют положительный индуктивный (+I) эффект и увеличивают электронную плотность на атоме азота:

что приводит к усилению основных свойств. Напротив, фенильный радикал C 6 H 5 - проявляет отрицательный мезомерный (-М) эффект и уменьшает электронную плотность на атоме азота:

Щелочная реакция растворов аминов объясняется образованием гидроксильных ионов при взаимодействии аминов с водой:

Амины в чистом виде или в растворах взаимодействуют с кислотами, образуя соли:

Обычно соли аминов - твердые вещества без запаха, хорошо растворимые в воде. В то время как амины хорошо растворимы в органических растворителях, соли аминов в них не растворяются. При действии щелочей на соли аминов выделяются свободные амины:

2. Горение. Амины сгорают в кислороде, образуя азот, углекислый газ и воду:

3. Реакции с азотистой кислотой. а) Первичные алифатические амины при действии азотистой кислоты превращаются в спирты:

б) Первичные ароматические амины при действии HNO 2 превращаются в соли диазония:

в) Вторичные амины (алифатические и ароматические) дают нитрозосоединения - вещества с характерным запахом:

Важнейшие представители аминов. Простейшие алифатические амины - метиламин, диметиламин, диэтиламин - находят применение при синтезе лекарственных веществ и других продуктов органического синтеза. Гексаметилендиамин NH 2 -(СН 2) 2 -NH 6 является одним из исходных веществ для получения важного полимерного материала нейлона.

Анилин C 6 H 5 NH 2 - важнейший из ароматических аминов. Он представляет собой бесцветную маслянистую жидкость, мало растворимую в воде. Для качественного обнаружения анилина используют его реакцию с бромной водой, в результате которой выпадает белый осадок 2,4,6-триброманилина:

Анилин применяется для получения красителей, лекарственных препаратов, пластмасс и т. д.

Аминокислоты. Аминокислоты - это органические бифункциональные соединения, в состав которых входят карбоксильная группа -СООН и аминогруппа -NH 2 . В зависимости от взаимного расположения обеих функциональных групп различают a -, b -, g -аминокислоты и т. д.:

Греческая буква при атоме углерода обозначает его удаленность от карбоксильной группы. Обычно рассматривают только a -аминокислоты, поскольку другие аминокислоты в природе не встречаются.

В состав белков входят 20 основных аминокислот (см. табл.).

Важнейшие a -аминокислоты общей формулы

Название

Фенилаланин

Глутаминовая кислота

CH 2 -CH 2 -СООН

Все природные аминокислоты можно разделить на следующие основные группы:

1 ) алифатические предельные аминокислоты (глицин, аланин);

2) серосодержащие аминокислоты (цистеин);

3) аминокислоты с алифатической гидроксильной группой (серин);

4) ароматические аминокислоты (фенилаланин, тирозин);

5 ) аминокислоты с кислотным радикалом (глутаминовая кислота);

6) аминокислоты с основным радикалом (лизин).

Изомерия. Во всех a -аминокислотах, кроме глицина, a -углеродный атом связан с четырьмя разными заместителями, поэтому все эти аминокислоты могут существовать в виде двух изомеров, являющихся зеркальными отражениями друг друга.

Получение. 1. Гидролиз белковых веществ обычно дает сложные смеси аминокислот. Однако разработан ряд методов, позволяющих из сложных смесей получать отдельные чистые аминокислоты.

2. Замещение галогена на аминогруппу в соответствующих галогенокислотах. Этот способ получения аминокислот полностью аналогичен получению аминов из гало-генопроизводных алканов и аммиака:

Физические свойства. Аминокислоты представляют собой твердые кристаллические вещества, хорошо растворимые в воде и мало растворимые в органических растворителях. Многие аминокислоты имеют сладкий вкус. Они плавятся при высоких температурах и обычно при этом разлагаются. В парообразное состояние переходить не могут.

Химические свойства. Аминокислоты - это органические амфотерные соединения. Они содержат в составе молекулы две функциональные группы противоположного характера: аминогруппу с основными свойствами и карбоксильную группу с кислотными свойствами. Аминокислоты реагируют как с кислотами, так и с основаниями:

При растворении аминокислот в воде карбоксильная группа отщепляет ион водорода, который может присоединиться к аминогруппе. При этом образуется внутренняя соль, молекула которой представляет собой биполярный ион:

Кислотно-основные превращения аминокислот в различных средах можно изобразить следующей схемой:

Водные растворы аминокислот имеют нейтральную, щелочную или кислую среду в зависимости от количества функциональных групп. Так, глутаминовая кислота образует кислый раствор (две группы -СООН, одна -NH 2), лизин - щелочной (одна группа -СООН, две -NH 2).

Аминокислоты могут реагировать со спиртами в присутствии газообразного хлороводорода, превращаясь в сложный эфир:

Важнейшее свойство аминокислот - их способность к конденсации с образованием пептидов.

Пептиды. Пептиды. - это продукты конденсации двух или более молекул аминокислот. Две молекулы аминокислоты могут реагировать друг с другом с отщеплением молекулы воды и образованием продукта, в котором фрагменты связаны пептидной связью -СО-NH -.

Полученное соединение называют дипептидом. Молекула дипептида, подобно аминокислотам, содержит аминогруппу и карбоксильную группу и может реагировать еще с одной молекулой аминокислоты:

Продукт реакции называется трипептидом. Процесс наращивания пептидной цепи может продолжаться в принципе неограниченно (поликонденсация) и приводить к веществам с очень высокой молекулярной массой (белкам).

Основное свойство пептидов - способность к гидролизу. При гидролизе происходит полное или частичное расщепление пептидной цепи и образуются более короткие пептиды с меньшей молекулярной массой или а-аминокислоты, составляющие цепь. Анализ продуктов полного гидролиза позволяет установить аминокислотный состав пептида. Полный гидролиз происходит при длительном нагревании пептида с концентрированной соляной кислотой.

Гидролиз пептидов может происходить в кислой или щелочной среде, а также под действием ферментов. В кислой и щелочной средах образуются соли аминокислот:

Ферментативный гидролиз важен тем, что протекает селективно, т. е. позволяет расщеплять строго определенные участки пептидной цепи.

Качественные реакции на аминокислоты. 1) Все аминокислоты окисляются нингидрином с образованием продуктов, окрашенных в сине-фиолетовый цвет. Эта реакция может быть использована для количественного определения аминокислот спектрофотометрическим методом. 2) При нагревании ароматических аминокислот с концентрированной азотной кислотой происходит нитрование бензольного кольца и образуются соединения, окрашенные в желтый цвет. Эта реакция называется ксантопротеиновой (от греч. ксантос - желтый).

Белки. Белки - это природные полипептиды с высокими значениями молекулярной массы (от10 000 до десятков миллионов). Они входят в состав всех живых организмов и выполняют разнообразные биологические функции.

Строение. Можно выделить четыре уровня в строении полипептидной цепи. Первичная структура белка - это конкретная последовательность аминокислот в полипептидной цепи. Пептидная цепь имеет линейную структуру только у небольшого числа белков. В большинстве белков пептидная цепь определенным образом свернута в пространстве.

Вторичная структура - это конформация полипептидной цепи, т. е. способ скручивания цепи в пространстве за счет водородных связей между группами NH и СО. Основной способ укладки цепи - спираль.

Третичная структура белка - это трехмерная конфигурация закрученной спирали в пространстве. Третичная структура образуется за счет дисульфидных мостиков -S-S- между цистеиновыми остатками, находящимися в разных местах полипептидной цепи. В образовании третичной структуры участвуют также ионные взаимодействия противоположно заряженных групп NH 3 + и СОО- и гидрофобные взаимодействия , т. е. стремление молекулы белка свернуться так, чтобы гидрофобные углеводородные остатки оказались внутри структуры.

Третичная структура - высшая форма пространственной организации белков. Однако некоторые белки (например, гемоглобин) имеют четвертичную структуру, которая образуется за счет взаимодействия между разными полипептидными цепями.

Физические свойства белков весьма разнообразны и определяютсяих строением. По физическим свойствам белки делят на два класса: глобулярные белки растворяются в воде или образуют коллоидные растворы, фибриллярные белки в воде нерастворимы.

Химические свойства. 1 . Разрушение вторичной и третичной структуры белка с сохранением первичной структуры называют денатурацией . Она происходит при нагревании, изменении кислотности среды, действии излучения. Пример денатурации - свертывание яичных белков при варке яиц. Денатурация бывает обратимой и необратимой. Необратимая денатурация может быть вызвана образованием нерастворимых веществ при действии на белки солей тяжелых металлов - свинца или ртути.

2. Гидролиз белков - это необратимое разрушение первичной структуры в кислом или щелочном растворе с образованием аминокислот. Анализируя продукты гидролиза, можно установить количественный состав белков.

3. Для белков известно несколько качественных реакций. Все соединения, содержащие пептидную связь, дают фиолетовое окрашивание при действии на них солей меди (II) в щелочном растворе. Эта реакция называется биуретовой. Белки, содержащие остатки ароматических аминокислот (фенилаланина, тирозина), дают желтое окрашивание при действии концентрированной азотной кислоты (ксантопротеиновая реакция).

Биологическое значение белков:

1. Абсолютно все химические реакции в организме протекают в присутствии катализаторов - ферментов. Все известные ферменты представляют собой белковые молекулы. Белки - это очень мощные и селективные катализаторы. Они ускоряют реакции в миллионы раз, причем для каждой реакции существует свой единственный фермент.

2. Некоторые белки выполняют транспортные функции и переносят молекулы или ионы в места синтеза или накопления. Например, содержащийся в крови белок гемоглобин переносит кислород к тканям, а белок миоглобин запасает кислород в мышцах.

3. Белки - это строительный материал клеток. Из них построены опорные, мышечные, покровные ткани.

4. Белки играют важную роль в иммунной системе организма. Существуют специфические белки (антитела), которые способны распознавать и связывать чужеродные объекты - вирусы, бактерии, чужие клетки.

5. Белки-рецепторы воспринимают и передают сигналы, поступающие от соседних клеток или из окружающей среды. Например, действие света на сетчатку глаза воспринимается фоторецептором родопсином. Рецепторы, активизируемые низкомолекулярными веществами типа ацетилхолина, передают нервные импульсы в местах соединения нервных клеток.

Из приведенного перечня функций белков ясно, что белки жизненно необходимы любому организму и являются, следовательно, важнейшей составной частью продуктов питания. В процессе пищеварения белки гидролизуются до аминокислот, которые служат исходным сырьем для синтеза белков, необходимых данному организму. Существуют аминокислоты, которые организм не в состоянии синтезировать сам и приобретает их только с пищей. Эти аминокислоты называют незаменимыми.

КЛАССИФИКАЦИЯ в эту группу соединений объединяют несколько классов: Амины Амиды Имиды Азосоединения Диазосоединения. Аминокислоты Нитросоединения Нитрозосоединения

АМИНЫ Амины могут быть рассмотрены как производные аммиака. Аминами называют органические соединения, которые получают замещением атомов водорода в аммиаке углеводородными радикалами.

o КЛАССИФИКАЦИИ В зависимости от количества атомов водорода в молекуле аммиака замещенных углеводородными радикалами амины делят на: Первичные Вторичные Третичные

По типу радикалов амины делят на: § Предельные; § Непредельные; § Ароматические. По количеству аминогрупп амины делят на: § Моноамины; § Диамины; § Полиамины.

o НОМЕНКЛАТУРА Универсальная. Название амина строят из двух слов: названия углеводородных радикалов по радикальной номенклатуре и слова «амин» . Рациональная. Употребляется для построения названий только первичных аминов. В основе лежит название углеводорода и приставка «амино-» перед которой цифрой указывают положение аминогруппы. Иногда вместо приставки используют суффикс «амин» .

Первичные амины Метиламин Аминометан Металомин Этиламин Аминоэтан Пропиламин 1 -аминопропан Изопропиламин 2 -аминопропан Пропиламин-2 Втор. пропиламин Бутиламин 1 -аминобутан

Втор. бутиламин 2 -аминобутан Изобутиламин 2 -метил-1 -аминопропан аминоизобутан Трет. бутиламин 2 -метил-2 -аминопропан 2 -метилпропиламин-2 Вторичные амины Диметиламин Метилэтиламин

o ФИЗИЧЕСКИЕ СВОЙСТВА Метиламин, диметиламин, триметиламин представляют собой газы. Остальные низшие амины – жидкости. Высшие амины – твердые вещества. Амины обладают неприятным запахом «селедочного рассола» , который у низших выражен ярче, а у высших – слабее (или отсутствует). Низшие амины (первые представители) довольно хорошо растворимы в воде (подобно аммиаку), их растворы имеют основную реакцию среды.

o СПОСОБЫ ПОЛУЧЕНИЯ В 1850 году немецкий ученый Гофман впервые получил амин в результате химической реакции взаимодействия галогенпроизводного углеводорода с избытком аммиака Избыток аммиака нужен для получения чистого амина. При недостатке аммиака всегда образуется смесь.

Наиболее биологически активными являются первичные амины. Их получили разложением амидов кислот (перегруппировка Гофмана). Амид пропионовой кислоты Этот способ широко используется в лабораторной практике.

В промышленности первичные амины получают восстановлением нитросоединений и нитрилов кислот. нитроэтан Нитрил пропионовой кислоты этиламин пропиламин

Взаимодействие с азотистой кислотой При взаимодействии первичных аминов с азотистой кислотой образуются первичные спирты.

Вторичные амины при взаимодействии с азотистой кислотой образуют нитрозамины (окрашенные соединения желто-оранжевого цвета).

Окисление. протекает трудно, а результат зависит от структуры. Окисление первичных аминов приводит к образованию нитросоединений.

Это соединения, в молекулах которых аминогруппа связана с бензольным кольцом. Простейшим представителем и родоначальником анилиновых красителей является

o. ФИЗИЧЕСКИЕ СВОЙСТВА Анилин – бесцветная, быстро буреющая на воздухе, жидкость. Плохо растворяется в воде.

o. ХИМИЧЕСКИЕ СВОЙСТВА обусловлены как аминогруппой, так и бензольным кольцом. Аминогруппа – заместитель электроннодонорный и свойства анилина обусловленные бензольным кольцом следующие:

взаимодействие со спиртами – специфические химические свойства аминогруппы, обусловленные непосредственным контактом с бензольным кольцом.

МОЧЕВИНА является полным амидом угольной кислоты. Широко распространена в природе. Является конечным продуктом белкового обмена. При обычных условиях мочевина – твердое кристаллическое вещество, плавящееся при температуре 133 С. Хорошо растворима в полярных и абсолютно нерастворима в неполярных растворителях. Обладает слабыми основными свойствами, но они выражены слабее, чем у аминов, из-за карбонильной группы.

ПОЛУЧЕНИЕ МОЧЕВИНЫ В промышленности мочевину получают следующими способами: Взаимодействием полного галогенангидрида угольной кислоты с аммиаком

Биурет является простейшим органическим соединением с пептидной связью. Пептидная связь является основной связью всех природных белковых тел. Реакция биурета с гидроксидом меди(II) является качественной реакцией на белки.

Аминокислотами называют такие производные карбоновых кислот, которые можно получить замещением одного или нескольких атомов водорода в радикале кислоты

o КЛАССИФИКАЦИИ В зависимости от количества карбоксильных групп: Одноосновные Двухосновные Многоосновные

В зависимости от количества аминогрупп: Моно-аминокислоты Ди-аминокислоты Три-аминокислоты В зависимости от строения радикала: С открытой цепью Циклические

o НОМЕНКЛАТУРА УНИВЕРСАЛЬНАЯ: правила построения названий такие же как для карбоновых кислот только с указанием в префиксе наличия, количества и положения аминогрупп. РАЦИОНАЛЬНАЯ: положение аминогрупп указывается буквами греческого алфавита + слово «амино» + название карбоновой кислоты по рациональной номенклатуре.

o ИЗОМЕРИЯ Изомерия положения аминогруппы относительно карбоксильной группы. Различают α-, β-, γ-, δ-, ε- и т. д. Структурная изомерия Оптическая изомерия

o ФИЗИЧЕСКИЕ СВОЙСТВА Аминокислоты – бесцветные кристаллические вещества, обладающие высокими показателями температуры плавления. Не летучи. Плавятся с разложением. Хорошо растворяются в воде и плохо растворяются в органических растворителях. Обладают оптической активностью.

ГОМОЛОГИЧЕСКИЙ РЯД 2 -аминоэтановая α-аминоуксусная глицин 2 -аминопропановая α-аминопропионовая α-аланин 3 -аминопропановая β-аминопропионовая β-аланин 2 -аминобутановая α-аминомасляная 3 -аминобутановая β-аминомасляная 4 -аминобутановая γ-аминомасляная

СПЕЦИФИЧЕСКИЕ СВОЙСТВА АМИНОКИСЛОТ Отношение к нагреванию α-аминокислоты В отсутствии минеральных кислот

Двухосновные аминокислоты способны образовывать внутренние соли. Обе встречаются среди продуктов гидролиза белковых тел. Аспарагиновая кислота в свободном виде встречается в животных и растительных организмах. Играет важную роль в азотистом обмене. Образует амид – аспаргин. Глутаминовая кислота используется при лечении психических расстройств. Образует амид – глутамин.

Src="https://present5.com/presentation/1/206975869_437124838.pdf-img/206975869_437124838.pdf-81.jpg" alt="ХИМИЧЕСКИЕ СВОЙСТВА Взаимодействие с водой (в водных растворах p. H>7) "> ХИМИЧЕСКИЕ СВОЙСТВА Взаимодействие с водой (в водных растворах p. H>7)

α-аминокислоты участвуют в синтезе белка. В состав белковых тел входят и такие аминокислоты, которые кроме аминогрупп содержат и другие функциональные группы. По своей значимости для организма все аминокислоты делятся на: § Заменимые (синтезируются в организме) § Не заменимые (запас пополняется только с пищей)

Название Формула По номенклатуре тривиальное Усл. Об. α-аминоуксусная Глицин гли α-аминопропионовая Аланин Ала α-аминоизовалериановая Валин вал α-аминоизокапроновая Лейцин лей Втор. бутил –αаминоуксусная Изолейцин иле

α, εдиаминок апронова я кислота лизин лиз α-амино-δ гуанидова аргинин лерианов ая АРГ α-амино-βокипропио новая серин сер α-аминоβоксимасл яная треонин тре β-тио-αаминопроп ионовая цистеин цис

цистин α-амино-γ- метионин метилтиом асляная α-амино-βфенилпро пионовая кислота Фенилала нин β-птирозин оксифенилαаминопроп ановая цин мет фен тир

БЕЛКИ Белками, или белковыми веществами, называют высокомолекулярные органические соединения, молекулы которых построены из остатков α-аминокислот, связанных между собой пептидными связями. Количество последних может колебаться очень сильно и достигать иногда нескольких тысяч. Структура белков очень сложная. Отдельные пептидные цепи или их участки могут быть связаны между собой дисульфидными, солевыми или водородными связями. Солевые связи образуются между свободными аминогруппами (например, концевая аминогруппа, расположенная на одном конце полипептидной цепи или ε-аминогруппа лизина) и свободными карбоксильными группами (концевая карбоксильная группа цепи или свободные карбоксильные группы двухосновных аминокислот); Водородные связи могут возникать между атомом кислорода карбонильной группы и атомом водорода аминогруппы, а также за счет гидроксогрупп оксиаминокислот и кислорода пептидных групп.

БЕЛКИ Различают первичную, вторичную, третичную и четвертичную структуры белковых молекул. Все белки, независимо от того к какой группе они относятся и какие функции выполняют, построены из относительно небольшого набора (обычно 20) аминокислот, которые расположены в различной, но всегда строго определенной для данного вида белка последовательности. Белки подразделяют на протеины и протеиды. Ø Пртеины – простые белки, состоящие только из остатков аминокислот. ü Альбумины – обладают сравнительно небольшой молекулярной массой, хорошо растворимы в воде, при нагревании свертываются.

БЕЛКИ ü Глобулины – не растворимы в чистой воде, но растворимы в теплом 10%-ном растворе Na. Cl. ü Проламины – незначительно растворимы в воде, но растворимы в 60÷ 80%-ном водном этиловом спирте. ü Глютелины – растворимы только в 0, 2%-ной щелочи. ü Протамины – совершенно не содержат серы. ü Пртеиноиды – нерастворимые белки. ü Фосфопротеины – содержат фосфорную кислоту (козеин).

БЕЛКИ Ø Пртеиды – сложные белки, в состав которых наряду с аминокислотами входят углеводы, липиды, гетероциклические соединения, нуклеиновые кислоты, фосфорная кислота. ü Липопротеиды – гидролизуются на простой белок и липиды. (зерна хлорофила, протоплазма клеток). ü Гликопротеиды – гидролизуются на простые белки и высокомолекулярные углеводы. (слизистые выделения животных). ü Хромопротеиды – гидролизуются на простые белки и красящие вещества (гемоглобин) ü Нуклеопротеиды – гидролизуются на простые белки (обычно протамины) и нуклеиновые кислоты

Характерные химические свойства азотсодержащих органических соединений: аминов и аминокислот

Амины

Амины — органические производные аммиака, в молекуле которого один, два или все три атома водорода замещены углеродным остатком.

Соответственно, обычно выделяют три типа аминов:

Амины, в которых аминогруппа связана непосредственно с ароматическим кольцом, называются ароматическими аминами.

Простейшим представителем этих соединений является аминобензол , или анилин :

Основной отличительной чертой электронного строения аминов является наличие у атома азота, входящего в функциональную группу, неподеленной электронной пары. Это приводит к тому, что амины проявляют свойства оснований.

Существуют ионы, которые являются продуктом формального замещения на углеводородный радикал всех атомов водорода в ионе аммония:

Эти ионы входят в состав солей, похожих на соли аммония. Они называются четвертичными аммонийными солями.

Изомерия и номенклатура

Для аминов характерна структурная изомерия:

изомерия углеродного скелета:

изомерия положения функциональной группы:

Первичные, вторичные и третичные амины изомерны друг другу (межклассовая изомерия ):

${CH_3-CH_2-CH_2-NH_2}↙{\text"первичный амин (пропиламин)"}$

${CH_3-CH_2-NH-CH_3}↙{\text"вторичный амин (метилэтиламин)"}$

Как видно из приведенных примеров, для того, чтобы назвать амин, перечисляют заместители, связанные с атомом азота (по порядку старшинства), и добавляют суффикс -амин .

Физические и химические свойства аминов

Физические свойства.

Простейшие амины (метил амин, диметиламин, триметиламин) — газообразные вещества. Остальные низшие амины — жидкости, которые хорошо растворяются в воде. Имеют характерный запах, напоминающий запах аммиака.

Первичные и вторичные амины способны образовывать водородные связи. Это приводит к заметному повышению их температур кипения по сравнению с соединениями, имеющими ту же молекулярную массу, но не способными образовывать водородные связи.

Анилин — маслянистая жидкость, ограниченно растворимая в воде, кипящая при температуре $184°С$.

Химические свойства.

Химические свойства аминов определяются в основном наличием у атома азота неподеленной электронной пары.

1. Амины как основания. Атом азота аминогруппы, подобно атому азота в молекуле аммиака, за счет неподеленной пары электронов может образовывать ковалентную связь по донорно-акцепторному механизму, выступая в роли донора. В связи с этим амины, как и аммиак, способны присоединять катион водорода, т.е. выступать в роли основания:

$NH_3+H^{+}→{NH_4^{+}}↙{\text"ион аммония"}$

$CH_3CH_2—NH_2+H^{+}→CH_3—{CH_2—NH_3^{+}}↙{\text"ион этиламмония"}$

Известно, что реакция аммиака с водой приводит к образованию гидроксид-ионов:

$NH_3+H_2O⇄NH_3·H_2O⇄NH_4^{+}+OH^{-}$.

Раствор амина в воде имеет щелочную реакцию:

$CH_3CH_2-NH_2+H_2O⇄CH_3-CH_2-NH_3^{+}+OH^{-}$.

Аммиак, реагируя с кислотами, образует соли аммония. Амины также способны вступать в реакцию с кислотами:

$2NH_3+H_2SO_4→{(NH_4)_2SO_4}↙{\text"сульфат аммония"}$,

$CH_3—CH_2—NH_2+H_2SO_4→{(CH_3—CH_2—NH_3)_2SO_4}↙{\text"сульфат этиламмония"}$.

Основные свойства алифатических аминов выражены сильнее, чем у аммиака. Повышение электронной плотности превращает азот в более сильного донора пары электронов, что повышает его основные свойства:

2. Амины горят на воздухе с образованием углекислого газа, воды и азота:

$4CH_3NH_2+9O_2→4CO_2+10H_2O+2N_2$

Аминокислоты

Аминокислоты — гетерофункциональные соединения, которые обязательно содержат две функциональные группы: аминогруппу $—NH_2$ и карбоксильную группу $—СООН$, связанные с углеводородным радикалом.

Общую формулу простейших аминокислот можно записать так:

Так как аминокислоты содержат две различные функциональные группы, которые оказывают влияние друг на друга, характерные реакции отличаются от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа $—NH_2$ определяет основные свойства аминокислот, т.к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа $—СООН$ (карбоксильная группа) определяет кислотные свойства этих соединений. Следовательно, аминокислоты — это амфотерные органические соединения.

Со щелочами они реагируют как кислоты:

С сильными кислотами — как основания-амины:

Кроме того, аминогруппа в аминокислоте вступает во взаимодействие с входящей в ее состав карбоксильной группой, образуя внутреннюю соль:

Так как аминокислоты в водных растворах ведут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концентрацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разложением при температуре выше $200°С$. Они растворимы в воде и нерастворимы в эфире. В зависимости от радикала $R—$ они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтетические. Среди природных аминокислот (около $150$) выделяют протеиногенные аминокислоты (около $20$), которые входят в состав белков. Они представляют собой L-формы. Примерно половина из этих аминокислот относятся к незаменимым , т.к. они не синтезируются в организме человека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, лизин, треонин, цистеин, метионин, гистидин, триптофан. В организм человека данные вещества поступают с пищей. Если их количество в пище будет недостаточным, нормальное развитие и функционирование организма человека нарушаются. При отдельных заболеваниях организм не в состоянии синтезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин.

Важнейшим свойством аминокислот является способность вступать в молекулярную конденсацию с выделением воды и образованием амидной группировки $—NH—CO—$, например:

${nNH_2—(CH_2)_5—COOH}↙{\text"аминокапроновая кислота"}→{(…—NH—(CH_2)_5—COO—…)_n}↙{\text"капрон"}+(n+1)H_2O$.

Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полиамидов.

Для получения синтетических волокон пригодны аминокислоты с расположением аминои карбоксильной групп на концах молекул.

Полиамиды $α$-аминокислот называются пептидами . В зависимости от числа остатков аминокислот различают дипептиды, пептиды, полипептиды. В таких соединениях группы $—NH—CO—$ называют пептидными.

Некоторые аминокислоты, входящие в состав белков.

Белки

Белками, или белковыми веществами, называют высокомолекулярные (молекулярная масса варьируется от $5-10$ тыс. до $1$ млн и более) природные полимеры, молекулы которых построены из остатков аминокислот, соединенных амидной (пептидной) связью.

Белки также называют протеинами (от греч. protos — первый, важный). Число остатков аминокислот в молекуле белка очень сильно колеблется и иногда достигает нескольких тысяч. Каждый белок обладает своей, присущей ему, по следовательностью расположения аминокислотных остатков.

Белки выполняют разнообразные биологические функции: каталитические (ферменты), регуляторные (гормоны), структурные (коллаген, фиброин), двигательные (миозин), транспортные (гемоглобин, миоглобин), защитные (иммуноглобулины, интерферон), запасные (казеин, альбумин, глиадин) и другие.

Белки — основа биомембран, важнейшей составной части клетки и клеточных компонентов. Они играют ключевую роль в жизни клетки, составляя как бы материальную основу ее химической деятельности.

Исключительное свойство белка — самоорганизация структуры , т.е. его способность самопроизвольно создавать определенную, свойственную только данному белку пространственную структуру. По существу, вся деятельность организма (развитие, движение, выполнение им различных функций и многое другое) связана с белковыми веществами. Без белков невозможно представить себе жизнь.

Белки — важнейшая составная часть пищи человека и животных, поставщик необходимых аминокислот.

Строение белков

Все белки образованы двадцатью разными $α$-аминокислотами, общую формулу которых можно представить в виде

где радикал R может иметь самое разнообразное строение.

Белки представляют собой полимерные цепи, состоящие из десятков тысяч, миллионов и более остатков $α$-аминокислот, связанных между собой пептидными связями. Последовательность аминокислотных остатков в молекуле белка называют его первичной структурой.

Для белковых тел характерны огромные молекулярные массы (до миллиарда) и почти макроразмеры молекул. Такая длинная молекула не может быть строго линейной, поэтому ее участки изгибаются и сворачиваются, что приводит к образованию водородных связей с участием атомов азота и кислорода. Образуется регулярная спиралевидная структура, которую называют вторичной структурой.

В белковой молекуле могут возникать ионные взаимодействия между карбоксильными и аминогруппами различных аминокислотных остатков и образование дисульфидных мостиков. Эти взаимодействия приводят к появлению третичной структуры .

Белки с $M_r > 50000$ состоят, как правило, из нескольких полипептидных цепей, каждая из которых уже имеет первичную, вторичную и третичную структуры. Говорят, что такие белки обладают четвертичной структурой.

Свойства белков

Белки — амфотерные электролиты. При определенном значении $рН$ среды (оно называется изоэлектрической точкой) число положительных и отрицательных зарядов в молекуле белка одинаково.

Это одно из основных свойств белка. Белки в этой точке электронейтральны, а их растворимость в воде наименьшая. Способность белков снижать растворимость при достижении электронейтральности их молекул используется для выделения из растворов, например, в технологии получения белковых продуктов.

Гидратация. Процесс гидратации означает связывание белками воды, при этом они проявляют гидрофильные свойства: набухают, их масса и объем увеличиваются. Набухание отдельных белков зависит от их строения. Имеющиеся в составе и расположенные на поверхности белковой макромолекулы гидрофильные амидные ($—СО—NH—$, пептидная связь), аминные ($—NH_2$) и карбоксильные ($—СООН$) группы притягивают к себе молекулы воды, строго ориентируя их на поверхности молекулы. Окружающая белковые глобулы гидратная (водная) оболочка препятствует агрегации и осаждению, а следовательно, способствует устойчивости растворов белка. В изоэлектрической точке белки обладают наименьшей способностью связывать воду, происходит разрушение гидратной оболочки вокруг белковых молекул, поэтому они соединяются, образуя крупные агрегаты. Агрегация белковых молекул происходит и при их обезвоживании с помощью некоторых органических растворителей, например этилового спирта. Это приводит к выпадению белков в осадок. При изменении $рН$ среды макромолекула белка становится заряженной, и его гидратационная способность меняется.

При ограниченном набухании концентрированные белковые растворы образуют сложные системы, называемые студнями . Студни не текучи, упруги, обладают пластичностью, определенной механической прочностью, способны сохранять свою форму.

Различная гидрофильность клейковинных белков — один из признаков, характеризующих качество зерна пшеницы и получаемой из него муки (так называемые сильные и слабые пшеницы). Гидрофильность белков зерна и муки играет важную роль при хранении и переработке зерна, в хлебопечении. Тесто, которое получают в хлебопекарном производстве, представляет собой набухший в воде белок, концентрированный студень, содержащий зерна крахмала.

Денатурация белков. При денатурации под влиянием внешних факторов (температуры, механического воздействия, действия химических агентов и ряда других факторов) происходит изменение вторичной, третичной и четвертичной структур белковой макромолекулы, т.е. ее нативной пространственной структуры. Первичная структура, а следовательно, и химический состав белка не меняются. Изменяются физические свойства: снижается растворимость, способность к гидратации, теряется биологическая активность. Меняется форма белковой макромолекулы, происходит агрегирование. В то же время увеличивается активность некоторых химических групп, облегчается воздействие на белки протеолитических ферментов, а следовательно, он легче гидролизуется.

В пищевой технологии особое практическое значение имеет тепловая денатурация белков, степень которой зависит от температуры, продолжительности нагрева и влажности. Это необходимо помнить при разработке режимов термообработки пищевого сырья, полуфабрикатов, а иногда и готовых продуктов. Особую роль процессы тепловой денатурации играют при бланшировании растительного сырья, сушке зерна, выпечке хлеба, получении макаронных изделий. Денатурация белков может вызываться и механическим воздействием (давлением, растиранием, встряхиванием, ультразвуком). Наконец, к денатурации белков приводит действие химических реагентов (кислот, щелочей, спирта, ацетона). Все эти приемы широко используются в пищевой и биотехнологии.

Пенообразование. Под процессом пенообразования понимают способность белков образовывать высококонцентрированные системы «жидкость — газ», называемые пенами. Устойчивость пены, в которой белок является пенообразователем, зависит не только от его природы и от концентрации, но и от температуры. Белки в качестве пенообразователей широко используются в кондитерской промышленности (пастила, зефир, суфле). Структуру пены имеет хлеб, а это влияет на его вкусовые качества.

Молекулы белков под влиянием ряда факторов могут разрушаться или вступать во взаимодействие с другими веществами с образованием новых продуктов. Для пищевой промышленности можно выделить два важных процесса: 1) гидролиз белков под действием ферментов; 2) взаимодействие аминогрупп белков или аминокислот с карбонильными группами восстанавливающих сахаров. Под влиянием протеаз-ферментов, катализирующих гидролитическое расщепление белков, последние распадаются на более простые продукты (поли- и дипептиды) и в итоге на аминокислоты. Скорость гидролиза белка зависит от его состава, молекулярной структуры, активности фермента и условий.

Гидролиз белков. Реакцию гидролиза с образованием аминокислот в общем виде можно записать так:

Горение. Белки горят с образованием азота, углекислого газа и воды, а также некоторых других веществ. Горение сопровождается характерным запахом жженых перьев.

Цветные реакции. Используют следующие реакции:

ксантопротеиновую, при которой происходит взаимодействие ароматических и гетероатомных циклов в молекуле белка с концентрированной азотной кислотой, сопровождающееся появлением желтой окраски;

биуретовую, при которой происходит взаимодействие слабощелочных растворов белков с раствором сульфата меди (II) с образованием комплексных соединений между ионами $Cu^{2+}$ и полипептидами. Реакция сопровождается появлением фиолетово-синей окраски.

По характеру углеводородных заместителей амины делят на

Общие особенности строения аминов

Также как и в молекуле аммиака, в молекуле любого амина атом азота имеет неподеленную электронную пару, направленную в одну из вершин искаженного тетраэдра:

По этой причине у аминов как и у аммиака существенно выражены основные свойства.

Так, амины аналогично аммиаку обратимо реагируют с водой, образуя слабые основания:

Связь катиона водорода с атомом азота в молекуле амина реализуется с помощью донорно-акцепторного механизма за счет неподеленной электронной пары атома азота. Предельные амины являются более сильными основаниями по сравнению с аммиаком, т.к. в таких аминах углеводородные заместители обладают положительным индуктивным (+I) эффектом. В связи с этим на атоме азота увеличивается электронная плотность, что облегчает его взаимодействие с катионом Н + .

Ароматические амины, в случае если аминогруппа непосредственно соединена с ароматическим ядром, проявляют более слабые основные свойства по сравнению с аммиаком. Связано это с тем, что неподеленная электронная пара атома азота смещается в сторону ароматической π-системы бензольного кольца в следствие чего, электронная плотность на атоме азота снижается. В свою очередь это приводит к снижению основных свойств, в частности способности взаимодействовать с водой. Так, например, анилин реагирует только с сильными кислотами, а с водой практически не реагирует.

Химические свойства предельных аминов

Как уже было сказано, амины обратимо реагируют с водой:

Водные растворы аминов имеют щелочную реакцию среды, вследствие диссоциации образующихся оснований:

Предельные амины реагируют с водой лучше, чем аммиак, ввиду более сильных основных свойств.

Основные свойства предельных аминов увеличиваются в ряду.

Вторичные предельные амины являются более сильными основаниями, чем первичные предельные, которые являются в свою очередь более сильными основаниями, чем аммиак. Что касается основных свойств третичных аминов, то то если речь идет о реакциях в водных растворах, то основные свойства третичных аминов выражены намного хуже, чем у вторичных аминов, и даже чуть хуже чем у первичных. Связано это со стерическими затруднениями, существенно влияющими на скорость протонирования амина. Другими словами три заместителя «загораживают» атом азота и мешают его взаимодействию с катионами H + .

Взаимодействие с кислотами

Как свободные предельные амины, так и их водные растворы вступают во взаимодействие с кислотами. При этом образуются соли:

Так как основные свойства предельных аминов сильнее выражены, чем у аммиака, такие амины реагируют даже со слабыми кислотами, например угольной:

Соли аминов представляют собой твердые вещества, хорошо растворимые в воде и плохо в неполярных органических растворителях. Взаимодействие солей аминов с щелочами приводит к высвобождению свободных аминов, аналогично тому как происходит вытеснение аммиака при действии щелочей на соли аммония:

2. Первичные предельные амины реагируют с азотистой кислотой с образованием соответствующих спиртов, азота N 2 и воды. Например:

Характерным признаком данной реакции является образование газообразного азота, в связи с чем она является качественной на первичные амины и используется для их различения от вторичных и третичных. Следует отметить, что чаще всего данную реакцию проводят, смешивая амин не с раствором самой азотистой кислоты, а с раствором соли азотистой кислоты (нитрита) и последующим добавлением к этой смеси сильной минеральной кислоты. При взаимодействии нитритов с сильными минеральными кислотами образуется азотистая кислота, которая уже затем реагирует с амином:

Вторичные амины дают в аналогичных условиях маслянистые жидкости, так называемые N-нитрозаминами, но данная реакция в реальных заданиях ЕГЭ по химии не встречается. Третичные амины с азотистой кислотой не взаимодействуют.

Полное сгорание любых аминов приводит к образованию углекислого газа, воды и азота:

Взаимодействие с галогеналканами

Примечательно, что абсолютно такая же соль получается при действии хлороводорода на более замещенный амин. В нашем случае, при взаимодействии хлороводорода с диметиламином:

Получение аминов:

1) Алкилирование аммиака галогеналканами:

В случае недостатка аммиака вместо амина получается его соль:

2) Восстановление металлами (до водорода в ряду активности) в кислой среде:

с последующей обработкой раствора щелочью для высвобождения свободного амина:

3) Реакция аммиака со спиртами при пропускании их смеси через нагретый оксид алюминия. В зависимости от пропорций спирт/амин образуются первичные, вторичные или третичные амины:

Химические свойства анилина

Анилин – тривиальное название аминобензола, имеющего формулу:

Как можно видеть из иллюстрации, в молекуле анилина аминогруппа непосредственно соединена с ароматическим кольцом. У таких аминов, как уже было сказано, основные свойства выражены намного слабее, чем у аммиака. Так, в частности, анилин практически не реагирует с водой и слабыми кислотами типа угольной.

Взаимодействие анилина с кислотами

Анилин реагирует с сильными и средней силы неорганическими кислотами. При этом образуются соли фениламмония:

Взаимодействие анилина с галогенами

Как уже было сказано в самом начале данной главы, аминогруппа в ароматических аминах, втянута в ароматическое кольцо, что в свою очередь снижает электронную плотность на атоме азота, и как следствие увеличивает ее в ароматическом ядре. Увеличение электронной плотности в ароматическом ядре приводит к тому, что реакции электрофильного замещения, в частности, реакции с галогенами протекают значительно легче, особенно в орто- и пара- положениях относительно аминогруппы. Так, анилин с легкостью вступает во взаимодействие с бромной водой, образуя белый осадок 2,4,6-триброманилина:

Данная реакция является качественной на анилин и часто позволяет определить его среди прочих органических соединений.

Взаимодействие анилина с азотистой кислотой

Анилин реагирует с азотистой кислотой, но в виду специфичности и сложности данной реакции в реальном ЕГЭ по химии она не встречается.

Реакции алкилирования анилина

С помощью последовательного алкилирования анилина по атому азота галогенпроизводными углеводородов можно получать вторичные и третичные амины:

Получение анилина

1. Восстановление маталлами нитробензола в присутствии сильных кислот-неокислителей:

C 6 H 5 -NO 2 + 3Fe + 7HCl = +Cl- + 3FeCl 2 + 2H 2 O

Cl — + NaOH = C 6 H 5 -NH 2 + NaCl + H 2 O

В качестве металлов могут быть использованы любые металлы, находящиеся до водорода в ряду активности.

Реакция хлорбензола с аммиаком:

С 6 H 5 −Cl + 2NH 3 → C 6 H 5 NH 2 + NH 4 Cl

Химические свойства аминокислот

Аминокислотами называют соединения в молекулах которых присутствуют два типа функциональных групп – амино (-NH 2) и карбокси- (-COOH) группы.

Другими словами, аминокислоты можно рассматривать как производные карбоновых кислот, в молекулах которых один или несколько атомов водорода замещены на аминогруппы.

Таким образом, общую формулу аминокислот можно записать как (NH 2) x R(COOH) y , где x и y чаще всего равны единице или двум.

Поскольку в молекулах аминокислот есть и аминогруппа и карбоксильная группа, они проявляют химические свойства схожие как аминов, так и карбоновых кислот.

Кислотные свойства аминокислот

Образование солей с щелочами и карбонатами щелочных металлов

Этерификация аминокислот

Аминокислоты могут вступать в реакцию этерификации со спиртами:

NH 2 CH 2 COOH + CH 3 OH → NH 2 CH 2 COOCH 3 + H 2 O

Основные свойства аминокислот

1. Oбразование солей при взаимодействии с кислотами

NH 2 CH 2 COOH + HCl → + Cl —

2. Взаимодействие с азотистой кислотой

NH 2 -CH 2 -COOH + HNO 2 → НО-CH 2 -COOH + N 2 + H 2 O

Примечание: взаимодействие с азотистой кислотой протекает так же, как и с первичными аминами

3. Алкилирование

NH 2 CH 2 COOH + CH 3 I → + I —

4. Взаимодействие аминокислот друг с другом

Аминокислоты могут реагировать друг с другом образуя пептиды – соединения, содержащие в своих молекулах пептидную связь –C(O)-NH-

При этом, следует отметить, что в случае проведения реакции между двумя разными аминокислотами, без соблюдения некоторых специфических условий синтеза, одновременно протекает образование разных дипептидов. Так, например, вместо реакции глицина с аланином выше, приводящей к глицилананину, может произойти реакция приводящая к аланилглицину:

Кроме того, молекула глицина не обязательно реагирует с молекулой аланина. Протекают также и реакции пептизации между молекулами глицина:

И аланина:

Помимо этого, поскольку молекулы образующихся пептидов как и исходные молекулы аминокислот содержат аминогруппы и карбоксильные группы, сами пептиды могут реагировать с аминокислотами и другими пептидами, благодаря образованию новых пептидных связей.

Отдельные аминокислоты используются для производства синтетических полипептидов или так называемых полиамидных волокон. Так, в частности с помощью поликонденсации 6-аминогексановой (ε-аминокапроновой) кислоты в промышленности синтезируют капрон:

Получаемая в результате этой реакции капроновая смола используется для производства текстильных волокон и пластмасс.

Образование внутренних солей аминокислот в водном растворе

В водных растворах аминокислоты существуют преимущественно в виде внутренних солей — биполярных ионов (цвиттер-ионов):

Получение аминокислот

1) Реакция хлорпроизводных карбоновых кислот с аммиаком:

Cl-CH 2 -COOH + 2NH 3 = NH 2 -CH 2 -COOH + NH 4 Cl

2) Расщепление (гидролиз) белков под действием растворов сильных минеральных кислот и щелочей.