Напряжение дуги. Электрическая дуга в процессе сварки

Качество сварного соединения – это результат удачного сочетания правильного выбора электрода, соблюдения условий, мастерства и умений сварщика, а также выбор правильного режима сварки на сварочном аппарате. К слову, на последнем компоненте этой цепочки, в этой статье, мы остановимся более подробно.

Дело в том, что от выбора режима сварки на сварочном аппарате зависит, чуть ли не 50% всего результата, поэтому каждому сварщику нужно знать, как правильно его выбирать, вне зависимости от того, раз в 5 лет вы решились поварить трубы на даче, или сталкиваетесь с этим ежедневно.

Дуговая сварка контролируется по ряду параметров, а если быть более конкретным, то по таким значениям, как: сварочный ток и напряжение дуги, скорость сварочного процесса, а также род и полярность тока, пространственное положение шва и тип электрода (в том числе, его диаметр). Поэтому, прежде чем приступить к сварке, обратите внимание на эти параметры, и в итоге, у вас получится качественный сварной шов.

Значение сварочного тока

Одним из главных параметров во время ручной дуговой сварки, является величина сварочного тока. Именно она определяет качества результирующего сварного шва, а также скорость и производительность всего сварочного процесса.

Как правило, все рекомендации касательно выбора величины сварочного тока, приводятся в инструкциях пользователя, что идут в комплекте с аппаратом. Но, если эта инструкция была утеряна или её не было изначально, значение сварочного тока можно определить, исходя из величины диаметра электрода.

Таким образом, диаметр электрода и величина сварочного тока взаимозависимы между собой. В свою очередь, диаметр также зависим от толщины изделия, которое будет свариваться. Поэтому, и значение сварочного тока будет зависимым от толщины изделия.

Необходимо помнить, что увеличение диаметра электрода приводит к уменьшению плотности сварочного тока. Это, в свою очередь, вызывает «блуждание» сварочной дуги, колебания и изменение длины дуги. В таком случае увеличивается ширина сварочного шва, а также уменьшается глубина провара, иными словами, качество сварки заметно ухудшается.

Также, сварной ток зависим от пространственного положения сварочного шва. Если во время сварки шок находится в потолочном или вертикальном положении, рекомендуют использовать электроды с диаметром не менее 4 мм, и при этом уменьшить сварочный ток на 10-20% от стандартных значений, принятых для горизонтального положения.

Величина напряжения дуги (в т.ч., длина сварочной дуги)

Как только вы определите силу сварочного тока, следует приступить к расчету длины сварочной дуги. В этом случае, длина между концом электрода и поверхность материала, который сваривается, и называется длиной сварочной дуги. Стабильность длины дуги во время сварки – очень важный показатель, который в конечном итоге серьезно влияет на качество шва.

Лучше всего работать на короткой дуге, длина которой не более длины электрода. Однако, на практике достичь этих условий трудно, даже при огромном опыте. Поэтому, принятой считать длину дуги такой, которая находится посредине между наиболее минимальным значением короткой дуги, и максимально длинной дуги. Для наглядности, руководствуйтесь таблицей ниже.



Определяем скорость сварки

Скорость сварки зависима от толщины детали, которая сваривается, а также от толщины сварочного шва. Определить скорость следует таким образом, чтобы сварочная ванна заполнялась расплавленным металлом от электрода, и могла возвышаться над поверхностью кромки, с плавным переходом к свариваемой детали, с минимальными наплывами или подрезами. Идеальной скоростью будет такое значение, при котором ширина сварочного шва была больше диаметра электрода в 1,5-2 раза.

При слишком медленном передвижении электрода, вдоль стыка будет образовываться большое количество жидкого металла, который, в свою очередь, начнет растекаться перед сварочной дугой, таким образом, препятствуя её действию на кромки. В результате, получится непровар или некачественно сделанный шов.

Собственно, слишком быстрое перемещение также вызывает непровары, из-за недостаточного количества тепла в зоне сварки. Это также чревато деформациями швов после охлаждения, а также формирования трещин.

Чтобы быстро определить оптимальную скорость сварки, проще всего приблизительно ориентироваться на размер сварочной ванны. Как правило, она имеет от 8 до 15 мм в ширину, от 6 мм в глубину, и от 10 до 30 мм в длину. Очень важно, чтобы в процессе сварки, ванна заполнялась равномерно, что свидетельствует о том, что глубина проплавления не изменяется, а значит всё хорошо.



Из приведенного рисунка вы можете увидеть закономерность, при которой ширина шва заметно уменьшается, если увеличивать скорость сварки, но глубина в таком случае остается постоянной. Поэтому, наиболее качественные швы будут получаться при скорости от 30 до 40 м/ч.

Параметры рода и полярности тока

Большинство бытовых сварочных аппаратов дуговой сварки работают при постоянном токе. В таком случае, возможно, всего 2 варианта подключения электрода к свариваемой детали, это:

- ток прямой полярности, при котором деталь подключается к зажиму «+», а электрод к «-»;

- ток обратной полярности, при котором наоборот, деталь подключают к зажиму «-», а электрод к зажиму «+».




Обратите внимание, что на зажиме «+» всегда выделяется большее количество тепла, чем на зажиме «-». Соответственно, при сварке тонколистовых металлических деталей, пользуются обратной полярностью, подключая зажим «+» к электроду, а не к детали. Это не даст прожечь деталь, таким образом, не «запороть» сварку. Также, обратная полярность применяется при сваривании высоколегированных сталей, с целью предотвращения перегрева. Прямой полярностью, чаще всего пользуются для сварки массивных и толстых деталей.

Для тех, кто не знал, низколегированной сталью называется конструкционная сталь, в которой содержание легирующих элементов не превышает порог в 2,5%. Такие стали широко используются в строительстве, строительстве судов, в трубопрокате. Сварка низколегированных сталей производится как вручную, так и автоматически, независимо от полярности.

Поджигание сварочной дуги

Как правило, в бытовой и профессиональной сварке, наиболее распространенными способами поджигания дуги, остаются «чиканье» и «касание».




Также, рекомендуем обращать внимание на наклон и длину электрода. Как правило, электрод держится в вертикальном положении, наклоняясь в отношении к направлению проводки. Поэтому, придерживаясь этих правил, вы сможете установить и выбрать оптимальный режим сварки на сварочном аппарате.

Основные понятия

Электрическая сварочная дуга представляет собой устойчивый дли­тельный электрический разряд в газовой среде между твердыми или жид­кими электродами при высокой плот­ности тока, сопровождающийся выделением большого количества теплоты. Электрический разряд в газе есть электрический ток, проходящий через газовую среду благодаря наличию в ней свободных электронов, а также отрицательных и положительных ио­нов, способных перемещаться между электродами под действием приложенного электрического поля (разности потенциалов между электродами).

Электрон - это частица весьма малой массы, несущая элементарный (наименьший, неделимый) электричес­кий заряд отрицательного знака. Мас­са электрона равна 9,1 10 -28 г ; эле­ментарный электрический заряд равен 1,6 10 -19 Кл . Ионом называется атом или молекула вещества, имею­щая один или несколько элементарных зарядов. Положительные ионы имеют избыточный положительный заряд; они образуются при потере нейтраль­ным атомом или молекулой одного или нескольких электронов из своей на­ружной (валентной) оболочки (электроны, вращающиеся в валентной оболочке атома, связаны слабее, чем электроны внутренних оболочек, и по­этому легко отрываются от атома при столкновениях или под действием обл­учения). Отрицательные ионы имеют избыточный отрицательный заряд; они образуются, если атом или молекула присоединяет к своей валентной оболочке лишние электроны.

  • Процесс, при котором из нейтральных атомов и молекул образуются положительные и отрицательные ионы, назы­вается ионизацией. Ионизация, вызван­ная в некотором объеме газовой среды, называется объемной ионизацией. Объемная ионизация, полученная благодаря нагреванию газа до очень высо­ких температур, называется терми­ческой ионизацией.

При высоких температурах значительная часть молекул газа обладает достаточной энергией для того, чтобы при столкновениях могло произойти разбиение нейтральных молекул на ионы; кроме того, с повышением температуры увеличивается общее число столкновений между молекулами газа. При очень высоких температурах на процесс ионизации начинает влиять также и излучение газа и раскаленных электронов. При обычных температурах ионизацию можно вызвать, если уже имеющимся в газе электронам и ионам сообщить с помощью электрического поля большие скорости. Обладая большой энергией, эти частицы могут разбивать нейтральные атомы и молекулы на ионы. Кроме того, ионизацию можно вызвать световыми, ультрафиолетовы­ми, рентгеновскими лучами, а также излучением радиоактивных веществ.

В обычных условиях воздух, как и все газы, обладает весьма слабой электропроводностью. Это объясняется малой концентрацией свободных электронов и ионов. Поэтому, для того чтобы вызвать в воздухе или в газе мощный электрический ток, т. е. элект­рическую дугу, необходимо ионизиро­вать воздушный промежуток (или дру­гую газообразную среду) между электродами. Ионизацию можно произвести, если приложить к электр­дам достаточно высокое напряжение; тогда имеющиеся в газе (в малом количестве) свободные электроны и ионы будут разгоняться электричес­ким полем и, получив большие энер­гии, смогут разбить нейтральные ато­мы и молекулы на ионы.

При сварке из соображений тех­ники безопасности нельзя пользовать­ся высокими напряжениями. Поэтому используют явления термоэлектронной и автоэлектронной эмиссий. При этом имеющиеся в металле в большом коли­честве свободные электроны, обладая достаточной кинетической энергией, переходят в газовую среду межэлектродного пространства и способствуют ее ионизации.

При термоэлектронной эмиссии благодаря высокой температуре сво­бодные электроны «испаряются» с поверхности металла. Чем выше тем­пература, тем большее число свобод­ных электронов приобретает энергию, достаточную для преодоления потен­циального барьера в поверхностном слое и выхода из металла. При авто­электронной (холодной) эмиссии со­здается внешнее электрическое поле, которое изменяет потенциональный барьер у поверхности металла и облег­чает выход тех электронов, которые имеют достаточную энергию для преодоления этого барьера.

  • Ионизация газовой среды характеризу­ется степенью ионизации, т. е. отноше­нием числа заряженных частиц в дан­ном объеме к первоначальному числу частиц (до начала ионизации).

Степень ионизации

При полной ионизации степень ионизации равна единице. На рисунке выше представлен график зависимости сте­пени ионизации от температуры нагре­ва некоторых веществ. Из графика видно, что при температуре 6000…8000 К такие вещества, как ка­лий, натрий, кальций, обладают доста­точно высокой степенью ионизации. Пары этих элементов, находясь в дуго­вом промежутке, обеспечивают лег­кость возбуждения и устойчивое горе­ние дуги. Это свойство щелочных ме­таллов объясняется тем, что атомы этих металлов обладают малым потен­циалом ионизации.

  • Потенциалом ионизации называется от­ношение работы выхода электрона из атома вещества к заряду этого элект­рона:

V = W / е,

где V -потенциал ионизации, В; W - работа выхода электрона, Дж; е - заряд электрона, Кл.

Сложные атомы, содержащие в своем составе много электронов, име­ют несколько потенциалов ионизации. Первый потенциал ионизации соответ­ствует выходу электрона, находяще­гося в наружной оболочке атома и слабее других связанного с ним. Вы­ход следующих электронов, располо­женных ближе к ядру и сильнее связанных с ним, требует большей работы. Поэтому вторые и последую­щие потенциалы ионизации, соответствующие выходам второго и последу­ющих электронов, будут больше. Пер­вые потенциалы V I ионизации некото­рых элементов:

Элементы K Na Ba Li Al Ca Cr Mn C H O N
V I 4,32 5,12 5,19 5,37 5,96 6,08 6,74 7,40 11,22 13,53 13,56 14,50

Как видно, наименьшим потенциа­лом ионизации обладают калий, нат­рий, барий, литий, алюминий, кальций и др. Поэтому для повышения устой­чивости горения электрической дуги эти вещества вводят в зону дуги в виде электродных покрытий или флюсов.

Таким образом, электропровод­ность воздушного промежутка между электродами, а отсюда и устойчивое горение дуги обеспечивается эмиссией катода и объемной ионизацией газов в зоне дуги, благодаря которым в дуге перемещаются мощные потоки заря­женных частиц.

Электрическая дуга постоянного тока возбуждается при соприкоснове­нии торца электрода и кромок свариваемых деталей. Контакт в на­чальный момент возникает между мик­ровыступами поверхностей электрода и свариваемой детали (рис. 1,а). Высокая плотность тока способствует мгновенному расплавлению этих вы­ступов и образованию пленки жид­кого металла (рис. 1, б), которая замыкает электрическую цепь на


Рис.1

участке «электрод - свариваемая де­таль». При последующем отводе элект­рода от поверхности детали на 2…4 мм (рис. 1, в) пленка жидкого металла растягивается, а сечение ее уменьша­ется, вследствие чего возрастает плот­ность тока и повышается температура металла. Эти явления приводят к раз­рыву пленки и испарению вскипевшего металла. При этом интенсивные термо- и автоэлектронная эмиссии обеспечи­вают ионизацию паров металла и га­зов межэлектродного промежутка. В образовавшейся ионизированной среде возникает электрическая сварочная дyгa (рис. 1, г ). Процесс возбуж­дения дуги кратковременен и осуще­ствляется сварщиком в течение долей секунды.

В установившейся сварочной дуге (Рис. 7, г ) различают три зоны: катодную 1, анодную 3 и столба дуги 2 . Катодная зона глубиной около 10 -5 см , так называемое катодное пятно, расположена на торце катода (на рис. 1 электрод является катодом,а деталь-анодом). Отсюда вылетает поток свободных электронов, ионизирующих дуговой промежуток. Плот­ность тока на катодном пятне достигает 60…70 А/мм 2 . К катоду устремляются потоки положительных ионов, которые бомбардируют его и отдают свою энергию, нагревая его до температуры 2500…3000°С .

Анодная зона , называемая анодным пятном, расположена на торце анода. К анодному пятну устремляются и отдают свою энергию потоки электронов, накаляя его до температуры 2500…4000°С . Столб дуги , расположенный между катодной и анодной зонами, состоит из раскаленных и ионизированных частиц. Температура в этой зоне достигает 6000…7000° С в зависимости от плотности сварочного тока.

В начальный момент для возбуждения дуги необходимо несколько большее напряжение, чем при ее последующем горении. Это объясняется тем, что при возбуждении дуги воздушный за­зор недостаточно нагрет, степень иони­зации невысокая и необходимо напряжение, способное сообщить свободным электронам такую энергию, чтобы при их столкновении с атомами газового промежутка могла произойти иониза­ция. Увеличение концентрации свобод­ных электронов в объеме дуги приво­дит к интенсивной ионизации дугового промежутка, а отсюда к повышению его электропроводности. Вследствие этого напряжение падает до значения, необходимого для устойчивого горе­ния дуги.

  • Зависимость напряжения дуги от тока и сварочной цепи называют статической вольт-амперной характеристикой дуги.

Рис.2

Вольт-амперная характеристика дуги (рис. 2, а ) имеет три области: падающую 1 , жесткую 2 и возрастающую 3. В области 1 (до 100 А ) с уве­личением тока напряжение значитель­но уменьшается. Это происходит в связи с тем, что при повышении тока увеличивается поперечное сечение, а следовательно, и проводимость столба дуги. В области 2 (100…1000 А ) при увеличении тока напряжение сохра­няется постоянным, так как сечение столба дуги и площади анодного и катодного пятен увеличиваются пропорционально току. Область характе­ризуется постоянством плотности тока. В области 3 напряжение возрастает вследствие того, что уве­личение плотности тока выше оп­ределенного значения не сопровождается увеличением катодного пятна ввиду ограниченности сечения элект­рода. Дуга области 1 горит неустой­чиво и поэтому имеет ограниченное применение. Дуга области 2 горит ус­тойчиво и обеспечивает нормальный процесс сварки.

Вольт-амперная характеристика дуги при ручной дуговой сварке низкоуглеродистой стали (рис. 2, б) представлена в виде кривых а (длина дуги 2 мм ) и б (длина дуги 4 мм ). Кривые в (длина дуги 2 мм ) и г (длина дуги 4 мм ) относятся к автоматической сварке под флюсом при высоких плотностях тока.

Напряжение, необходимое для воз­буждения дуги, зависит: от рода тока (постоянный или переменный), длины дугового промежутка, материала электрода и свариваемых кромок, по­крытия электродов и ряда других факторов. Значения напряжений, обе­спечивающих возникновение дуги в дуговых промежутках, равных 2…4 мм , находятся в пределах 40…70 В . На­пряжение (В ) для установившейся сварочной дуги может быть определе­но по формуле

U д = a + b l д

где а - коэффициент, по своей физи­ческой сущности представляющий сумму падений напряжений в катодной и анодной зонах, В ; b - коэффициент, выражающий среднее падение напря­жения на единицу длины дуги, В/мм ; l д - длина дуги, мм .

  • Длиной дуги называется расстояние между торцом электрода и поверх­ностью сварочной ванны. «Короткой» называют дугу длиной 2…4 мм. Длина «нормальной» дуги - 4…6 мм. Дугу длиной более 6 мм называют «длинной».

Оптимальный режим сварки обе­спечивается при короткой дуге. При длинной дуге процесс протекает неравномерно, дуга горит неустойчиво, ме­талл, проходя через дуговой промежу­ток, больше окисляется и азотирует­ся, увеличиваются угар и разбрызги­вание металла.

Электрическая сварочная дуга мо­жет отклоняться от своего нормально­го положения при действии магнитных полей, неравномерно и несим­метрично расположенных вокруг дуги и в свариваемой детали. Эти поля действуют на движущиеся заряжен­ные частицы и тем самым оказывают воздействие на всю дугу. Такое явле­ние называется магнитным дутьем . Воздействие магнитных полей на дугу прямо пропорционально квадрату си­лы тока и становится заметным при сварочных токах более 300 А.


Рис.3

На отклонение дуги влияют места подвода тока к свариваемой детали (рис. 3, а, б, в ) и наклон электрода (рис. 3, г ). Наличие вблизи свароч­ной дуги значительных ферромагнитных масс также нарушает симметричность магнитного поля дуги и вызывает отклонение дуги в сторону эти масс.

Магнитное дутье в некоторых случаях затрудняет процесс сварки, и поэтому принимаются меры по снижению его действия на дугу. К таким мерам относятся: сварка короткой дугой, подвод сварочного тока в точке, максимально близкой к дуге, наклон электрода в сторону действия магнитного дутья, размещение у места сварки ферромагнитных масс.

При использовании переменного тока анодное и катодное пятна меняются местами с частотой, равной частоте тока. С течением времени напряжение U д и ток I периодически изменяются от нулевого значения до наибольшего, как показано на рис. 4 (U x x - напряжение зажигания дуги).

Рис.4

При переходе значения тока через нуль и перемене полярности в начале и в конце каждого полупериода дуга гаснет, температура активных пятен и дугового промежутка снижается. Вследствие этого происходит деионизация газов и уменьшение электропро­водности столба дуги. Интенсивнее падает температура активного пятна, расположенного на поверхности сва­рочной ванны в связи с отводом теплоты в массу основного металла. Повторное зажигание дуги в начале малого полупериода возможно только при повышенном напряжении, называемом пиком зажигания. При этом установлено, что пик зажигания несколько выше, когда катодное пятно находится на основном металле. Для снижения пика зажигания, облегчения повторного зажигания дуги и повышения устойчивости ее горения применяют меры, снижающие эффективный по­тенциал ионизации газов в дуге. При этом электропроводность дуги после ее угасания сохраняется дольше, пик за­жигания снижается, дуга легче возбуждается и горит устойчивее.

К этим мерам относится применение различных стабилизирующих элементов (калий, натрий, кальций и др.), вводимых в зону дуги в виде электродных покрытий или в виде флюсов.

Важное значение имеет сдвиг фаз между напряжением и током: необходимo, чтобы при переходе тока через нулевое значение напряжение было достаточным для возбуждения дуги.

Тепловые свойства сварочной дуги

Рис.5

Энергия мощных потоков заряженных частиц, бомбардирующих катод и анод, превращается в тепловую энергию электрической дуги. Суммарное количество теплоты Q (Дж ) , выделяемое дугой на катоде Q K , аноде Q a и а столбе дуги Q 0 , определяется по фор­муле:

Q = I U д t ,

где I - сварочный ток, A ; U д - на­пряжение дуги, В ; t - время горения дуги, с .

При питании дуги постоянным то­ком (рис. 11) наибольшее количество теплоты выделяется в зоне анода. Это объясняется тем, что анод под­вергается более мощной бомбардиров­ке заряженными частицами, чем ка­тод, а при столкновении частиц в стол­бе дуги выделяется меньшая доля общего количества теплоты.

При сварке угольным электродом температура в катодной зоне дости­гает 3200° С , в анодной - 3900°С , а в столбе дуги среднее значение температуры составляет 6000° С . При сварке металлическим электродом температура катодной зоны состав­ляет около 2400° С , а анодной зоны - 2600° С .

Разная температура катодной и анодной зон и разное количество теп­лоты, выделяющейся в этих зонах, используются при решении технологи­ческих задач. При сварке деталей, требующих большого подвода теплоты для прогрева кромок, применяют прямую полярность, при которой анод (плюсовая клемма источника тока) подсоединяют к детали, а катод (ми­нусовая клемма источника тока) - к электроду. При сварке тонкостен­ных изделий,тонколистовых конструк­ций, а также сталей, не допускающих перегрева (нержавеющие, жаропроч­ные, высокоуглеродистые и др.), при­меняют сварку постоянным током об­ратной полярности. В этом случае катод подсоединяют к свариваемой детали, а анод - к электроду. При этом не только обеспечивается меньший нагрев свариваемой детали, но и уско­ряется процесс расплавления электродного материала за счет более вы­сокой температуры анодной зоны и большего подвода теплоты. Поляр­ность клемм источника постоянного тока определяют с помощью раствора поваренной соли (половина чайной ложки соли на стакан воды). Если в такой раствор опустить провода от клемм источника тока, то у отрица­тельного провода будет происходить бурное выделение пузырьков во­дорода.

При питании дуги переменным то­ком различие температур катодной и анодной зон и распределение теплоты сглаживаются вследствие периодичес­кой смены катодного и анодного пятна с частотой, равной частоте тока.

Практика показывает, что в сред­нем при ручной сварке только 60…70% теплоты дуги используется на нагре­вание и плавление металла. Осталь­ная часть теплоты рассеивается в ок­ружающую среду через излучение и конвекцию.

Количество теплоты, используемое на нагрев и плавку свариваемого ме­талла в единицу времени, называется эффективной тепловой мощностью дуги Q э (Дж ). Она равна полной тепловой мощности дуги, умноженной на эффективный коэффициент полез­ного действия η нагрева металла дугой:

Q э = I U д η .

Величина η зависит от способа сварки, материала электрода, состава электродного покрытия и других факторов. При ручной дуговой сварке электродом с тонким покрытием или угольным электродом η составляет 0,5…0,6 , а при качественных электро­дах - 0,7…0,85 . При аргонодуговой сварке потери теплоты значительны (η = 0,5…0,6 ). Наиболее полно ис­пользуется теплота при сварке под флюсом (η = 0,85…0,93 ).

Для характеристики теплового ре­жима процесса сварки принято оп­ределять погонную энергию дуги , т. е. количество теплоты, вводимое в ме­талл на единицу длины однопроход­ного шва, измеряемое в Дж/м . Погонная энергия Q п равна отношению эффективной тепловой мощности Q э к скорости сварки v :

Q п = Q э / v = I U д η/ v .

Потери теплоты при ручной дуго­вой сварке составляют примерно 25% , из которых 20% уходят в окружающую среду через излучение и кон­векцию паров и газов, а 5% - на угар и разбрызгивание свариваемого металла. При автоматической сварке под флюсом потери составляют только 17% , из которых 16% расходуются на плавление флюса и 1 % на угар и разбрызгивание..

Металл плавящегося электрода пе­реходит (в виде капель различного размера) в сварочную ванну. Схема­тично перенос металла электрода мож­но представить в следующем виде. В начальный момент металл на конце электрода подплавляется и образует­ся слой расплавленного металла (рис. 6, а ). Затем под действием сил поверхностного натяжения и силы тя­жести этот слой металла принимает форму капли (рис. 6, б ) с образованием у основания тонкой шейки, которая с течением времени уменьшается. Это приводит к значительному увеличению плотности тока в шейке капли. Удлинение шейки продолжается до момента касания капли поверхности сварочной ванны (рис. 6, в ). В этот момент происходит короткое замыкание сварочной цепи. Резкое возрастание тока приводит к разрыву шейки и в следующее мгновение вновь возникает дуга (рис. 6, г ), но уже между торцом электрода и каплей. Под давлением паров и газов зоны дуги капля с ускорением внедряется в жидкий металл сварочной ванны. При этом часть металла разбрызгивается. Затем процесс каплеобразования повторяется.


Рис. 6

Установлено, что время горения дуги короткого замыкания составля­ет примерно 0,02…0,05 с . Частота и продолжительность короткого замыкания в значительной степени зависит от длины сварочной дуги. Чем меньшедлина дуги, тем больше коротких замыканий и тем они продолжительнее.

Форма и размеры капель металла определяется силой тяжести и силами поверхностного натяжения. При сварке в нижнем положении сила тяжести способствует отрыву капли, а при потолочной сварке препятствует перено­су металла электрода в шов. На раз­меры капель большое влияние оказывают состав и толщина электродного покрытия, а также сварочный ток. Электродное покрытие, как правило, снижает поверхностное натяжение металла почти на 25…30% . Кроме того, газообразующие компоненты покрытия выделяют большое количество газов и создают в зоне дуги повышен­ное давление, которое способствует размельчению капель жидкого металла. При повышении сварочного тока размер капель уменьшается. Перенос электродного металла крупными каплями имеет место при сварке на малых токахэлектродами с тонким покрытием. При больших плотностях сварочного тока и при использовании электродов с толстым покрытием перенос металла осуществляется в виде потока маленьких капель (струйный перенос металла ).

Рис. 7

На скорость переноса капель металла в дуге действует газовое дутье, представляющее собой поток газов, направленный вдоль дуги в сторону сварочной ванны. При сварке электродом с толстым покрытием стер­жень 1 электрода (рис. 7) плавится быстрее и торец его оказывается несколько прикрытым «чехольчиком» 3 покрытия 2 . Интенсивное газообразо­вание в небольшом объеме «чехоль­чика» приводит к явлению газового дутья, ускоряющего переход капель металла в сварочную ванну.

Основным фактором, влияющим на скорость переноса металла в дуге, является электромагнитное поле. Магнитное поле оказывает сжи­мающее действие и ускоряет образо­вание и сужение шейки капли, а сле­довательно, и отрыв ее от торца элек­трода. Электрическое поле, напряжен­ность которого направлена вдоль дуги в сторону сварочной ванны, также ускоряет процесс отрыва капель. При потолочной сварке перенос капель электродного металла в сварной шов обеспечивается в основном действием магнитного и электрического полей, а также явлением газового дутья в дуге.

Капли металла, проходящие черёз дугу, имеют шлаковую оболочку, кото­рая образуется от плавления веществ, входящих в покрытие электрода. Эта оболочка защищает металл капли от окисления и азотирования, обеспе­чивая хорошее качество металла шва.

Доля электродного металла в сос­таве металла шва различна и зависит от способа и режима сварки, а также от вида сварного шва. При ручной сварке доля электродного металла ко­леблется в широких пределах (30…80%) , а при автоматической сварке она составляет 30…40% .

Производительность сварки в зна­чительной степени зависит от скорости расплавления электродного металла, которая оценивается коэффициентом расплавления α ρ .

  • Коэффициент расплавления численно равен массе электродного металла в граммах, расплавленной в течение од­ного часа, отнесенной к одному амперу сварочного тока.

Коэффициент расплавления зави­сит от ряда факторов. При обратной полярности коэффициент расплавления больше, чем при прямой поляр­ности, так как температура анода вы­ше, чем катода. Состав покрытия электрода и его толщина также влия­ют на коэффициент расплавления. Это объясняется, вопервых, значением эффективного потенциала ионизации газов, а во-вторых, изменением тепло­вого баланса дугового промежутка. Коэффициент расплавления при руч­ной дуговой сварке составляет 6,5… 14,5 г/(А ч) . Меньшие значения имеют электроды с тонким покрытием, а большие - электроды с толстым покрытием.

  • Для оценки скорости сварки пользуются коэффициентом наплавки α н . Этот коэффициент оценивает массу электродного металла, введенного в сварной шов.

Коэффициент наплавки меньше коэффициента расплавления на вели­чину потерь электродного металла из-за угара и разбрызгивания. Эти потери при ручной сварке достигают 25…30% , а при автоматической сварке под флю­сом составляют только 2…5% от коли­чества расплавленного электродного металла. Знание этих коэффициентов позволяет произвести расчет потреб­ного количества электродного металла для сварки шва установленного сече­ния и определить скорость сварки шва.

Количество металла (кг ), необхо­димое для получения сварного шва, g н = LF ρ , где L - длина свариваемо­го шва, м ; F - площадь поперечного сечения шва, м 2 ; ρ - плотность элек­тродного металла, кг / м 3 .

Выражая это же количество ме­талла (кг ) через коэффициент наплав­ки, получим g н = 10 -3 а н It , где а н - коэффициент наплавки, г/(А ч) ; I - сварочный ток, A ; t - время горения дуги, ч . Отсюда: время горения ду­ги (ч ) t = 10 -3 g н /(α н I) ; скорость сварки (м/ч ) v = L / t .

Зная g н , можно определить необхо­димое количество электродного ме­талла: g э =g н (1+Ψ) , где Ψ - коэффициент потерь металла на угар и разбрызгивание.

Кроме того, потребное количество электродного металла (кг ) можно оп­ределить, зная коэффициент расплавления α ρ :g э =10 -3 α ρ It .

Задавшись диаметром и длиной электрода, по g э вычисляют потреб­ное количество электродов. Диаметр стержня электрода должен соответст­вовать значению сварочного тока, дли­на стандартизована.

При дуговом процессе напряжение дуги мало влияет на глубину провара Ширина шва связана с напряже­нием прямой зависимостью. С увеличением напряжения дуги в практически применяемых пределах ширина шва увеличивается. Для иллюстрации этого положения на рис. 5-52, а, б, в приведены зависимости между шириной шва и напряжением дуги при сварке под флюсом Из всех элементов режима напряжение дуги оказы­вает наибольшее влияние на ширину шва и является элементом режима, за счет которого при механизированных способах сварки изменяют ширину шва в желаемом направлении.

При сварке вручную покрытыми электродами напряжение дуги изменяется в узких пределах (18-22 В) и поэтому не яв­ляется элементом режима, за счет которого можно изменять ши­рину шва в нужном направлении. При ручной сварке ширина шва изменяется путем поперечного перемещения (колебания) конца электрода.

Скорость сварки. Влияние скорости сварки на глубину погру­жения дуги носит сложный характер. При малых скоростях (порядка 10-12 м/ч при сварке под флюсом и 1,0-1,5 м/ч при ручной дуговой сварке) глубина провара минимальна. Это обус­ловлено уменьшением интенсивности вытеснения сварочной ванны из-под основания дуги при характерном для этих случаев верти­кальном ее расположении. У основания дуги образуется слой жидкого металла, который препятствует проплавлению основного металла.

Повышение скорости сварки до некоторого значения, завися­щего от конкретных условий, приводит к увеличению глубины провара Так, при сварке под флюсом увеличение скорости сварки от 10 до 25 м/ч приводит к увеличению глубины провара. Даль­нейшее увеличение скорости сварки вызывает снижение глубины провара за счет уменьшения погонной энергии (рис. 5-53).

Ширина шва связана со скоростью сварки обратной зависи­мостью Увеличение скорости сварки приводит к уменьшению ширины шва, что обусловлено уменьшением подвижности дуги

при повышении скорости ее пере­движения Указанная закономер­ность сохраняется при всех значе­ниях скорости сварки (рис 5-53) Изменение скорости сварки яв­ляется весьма эффективным сред­ством изменения ширины шва при всех способах дуговой сварки.

Поперечное перемещение кон­ца электрода позволяет значи­тельно изменять ширину шва и глубину провара Этот метод ши­роко применяется при ручной сварке При увеличении ампли­туды перемещения конца элект­рода снижается глубина провара и значительно увеличивается ши­рина шва, что связано с умень­шением концентрации источника нагрева При механизированных способах сварки поперечное пере­мещение электрода также при­водит к изменению ширины шва и глубины проплавления. Ана­логичные изменения формы шва наблюдаются при сварке сдвоен­ным электродом и электродной лентой

При увеличении вылета электрода возрастает интенсивность его плавления, в результате чего снижается сила тока, а следова­тельно, и глубина провара. При сварке электродной проволокой диаметром 3 мм и выше изменение величины вылета в пределах ± (6-8) мм, часто наблюдаемое на практике, не оказывает за­метного влияния на формирование шва При сварке проволокой диаметром 0,8-2 мм такие колебания вылета электрода могут привести к некоторому изменению конфигурации шва.

Электрическая сварочная дуга представляет собой устойчивый дли­тельный электрический разряд в газо­вой среде между твердыми или жид­кими электродами при высокой плот­ности тока, сопровождающийся выде­лением большого количества теплоты. Электрический разряд в газе есть электрический ток, проходящий через газовую среду благодаря наличию в ней свободных электронов, а также отрицательных и положительных ио­нов, способных перемещаться между электродами под действием приложен­
ного электрического поля (разности потенциалов между электродами).

Электрон - это частица весьма малой массы, несущая элементарный (наименьший, неделимый) электричес­кий заряд отрицательного знака. Мас­са электрона равна 9,1 Ю~28г; эле­ментарный электрический заряд равен 1,6 Ю-19 Кл. Ионом называется атом или молекула вещества, имею­щая один или несколько элементарных зарядов. Положительные ионы имеют избыточный положительный заряд; они образуются при потере нейтраль­ным атомом или молекулой одного или нескольких электронов из своей на­ружной (валентной) оболочки (элект­роны, вращающиеся в валентной обо­лочке атома, связаны слабее, чем электроны внутренних оболочек, и по­этому легко отрываются от атома при столкновениях или под действием об­лучения). Отрицательные ионы имеют избыточный отрицательный заряд; они образуются, если атом или молекула присоединяет к своей валентной обо­лочке лишние электроны.

Процесс, при котором из нейтральных атомов и молекул образуются положи­тельные и отрицательные ионы, назы­вается ионизацией. Ионизация, вызван­ная в некотором объеме газовой среды, называется объемной ионизацией. Объемная ионизация, полученная бла­годаря нагреванию газа до очень высо­ких температур, называется терми­ческой ионизацией.

При высоких температурах значи­тельная часть молекул газа обладает достаточной энергией для того, чтобы при столкновениях могло произойти разбиение нейтральных молекул на ионы; кроме того, с повышением температуры увеличивается общее число столкновений между молекула­ми газа. При очень высоких темпера­турах на процесс ионизации начинает влиять также и излучение газа и рас­каленных электронов. При обычных температурах ионизацию можно вы­звать, если уже имеющимся в газе электронам и ионам сообщить с помощью электрического поля боль­шие скорости. Обладая большой энергией, эти частицы могут разбивать нейтральные атомы и молекулы на ионы. Кроме того, ионизацию можно вызвать световыми, ультрафиолетовы­ми, рентгеновскими лучами, а также излучением радиоактивных веществ.

В обычных условиях воздух, как и все газы, обладает весьма слабой электропроводностью. Это объясняет1 ся малой концентрацией свободных электронов и ионов. Поэтому, для того чтобы вызвать в воздухе или в газе мощный электрический ток, т. е. элект­рическую дугу, необходимо ионизиро­вать воздушный промежуток (или дру­гую газообразную среду) между электродами. Ионизацию можно про­извести, если приложить к электро­дам достаточно высокое напряжение; тогда имеющиеся в газе (в малом количестве) свободные электроны и ионы будут разгоняться электричес­ким полем и, получив большие энер­гии, смогут разбить нейтральные ато­мы и молекулы на ионы.

При сварке из соображений тех­ники безопасности нельзя пользовать­ся высокими напряжениями. Поэтому используют явления термоэлектронной и автоэлектронной эмиссий. При этом имеющиеся в металле в большом коли­честве свободные электроны, обладая достаточной кинетической энергией, переходят в газовую среду межэлект­родного пространства и способствуют ее ионизации.

При термоэлектронной эмиссии благодаря высокой температуре сво­бодные электроны «испаряются» с по­верхности металла. Чем выше тем­пература, тем большее число свобод­ных электронов приобретает энергию, достаточную для преодоления потен­циального барьера в поверхностном слое и выхода из металла. При авто­электронной (холодной) эмиссии со­здается внешнее электрическое поле, которое изменяет потенциональный барьер у поверхности металла и облег­чает выход тех электронов, которые имеют достаточную энергию для пре­одоления этого барьера.

Ионизация газовой среды характеризу­ется степенью ионизации, т. е. отноше­нием числа заряженных частиц в дан­ном объеме к первоначальному числу частиц (до начала ионизации).

При полной ионизации степень ионизации равна единице. На рис. 6 представлен график зависимости сте­пени ионизации от температуры нагре­ва некоторых веществ. Из графика видно, что при температуре 6000...8000 К такие вещества, как ка­лий, натрий, кальций, обладают доста­точно высокой степенью ионизации. Пары этих элементов, находясь в дуго­вом промежутке, обеспечивают лег­кость возбуждения и устойчивое горе­ние дуги. Это свойство щелочных ме­таллов объясняется тем, что атомы

Этих металлов обладают малым потен­циалом ионизации.

V = W / е,

Где V - потенциал ионизации, В; W-работа, выхода электрона, Дж; е - заряд электрона, Кл.

Сложные атомы, содержащие в своем составе много электронов, име­ют несколько потенциалов ионизации. Первый потенциал ионизации соответ­ствует выходу электрона, находяще­гося в наружной оболочке атома и слабее других связанного с ним. Вы­ход следующих электронов, располо­женных ближе к ядру и сильнее связанных с ним, требует большей работы. Поэтому вторые и последую­щие потенциалы ионизации, соответ­ствующие выходам второго и последу­ющих электронов, будут больше. Пер­вые потенциалы V, ионизации некото­рых элементов:

Электрическая дуга постоянного тока возбуждается при сопрйкоснове - нии торца электрода и кромок свариваемых деталей. Контакт в на­чальный момент возникает между мик­ровыступами поверхностей электрода и свариваемой детали (рис. 7, а). Высокая плотность тока способствует мгновенному расплавлению этих вы­ступов и образованию пленки жид­кого металла (рис. 7, б), которая замыкает электрическую цепь на
участке «электрод - свариваемая де­таль». При последующем отводе элект­рода от поверхности детали на 2...4 мм (рис. 7, в) пленка жидкого металла растягивается, а сечение ее уменьша­ется, вследствие чего возрастает плот­ность тока и повышается температура металла. Эти явления приводят к раз­рыву пленки и испарению вскипевшего металла. При этом интенсивные термо - и автоэлектронная эмиссии обеспечи­вают ионизацию паров металла и га­зов межэлектродного промежутка. В образовавшейся ионизированной сре­де возникает электрическая сварочная дуга (рис. 7, г). Процесс возбуж­дения дуги кратковременен и осуще­ствляется сварщиком в течение долей секунды.

В установившейся сварочной дуге (рис. 7, г) различают три зоны: катодную /, анодную 3 и столба дуги 2. Катодная зона глубиной около Ю-5 см, так называемое катодное пятно, расположена на торце катода (на рис. 7 электрод является катодом, а деталь-анодом). Отсюда вылетает поток свободных электронов, ионизи­рующих дуговой промежуток. Плот­ность тока на катодном пятне дости­гает 60...70 А/мм2. К катоду устрем­ляются потоки положительных ионов, которые бомбардируют его и отдают свою энергию, нагревая его до тем­пературы 2500...3000° С.

Анодная зона, называемая анод­ным пятном, расположена на "торце анода. К анодному пятну устремляют­ся и отдают свою энергию потоки электронов, накаляя его до температу­ры 2500...4000°С. Столб дуги, распо­ложенный между катодной и анодной зонами, состоит из раскаленных и ио­низированных частиц. Температура в этой зоне достигает 6000...7000° С в зависимости от плотности сварочного тока.

В начальный момент для возбужде­ния дуги необходимо несколько боль­шее напряжение, чем при ее последую­щем горении. Это объясняется тем, что при возбуждении дуги воздушный за­зор недостаточно нагрет, степень иони­зации невысокая и необходимо напря­жение, способное сообщить свободным А)

80 120 1801,А

Электронам такую энергию, чтобы при их столкновении с атомами газового промежутка могла произойти иониза­ция. Увеличение концентрации свобод­ных электронов в объеме дуги приво­дит к интенсивной ионизации дугового промежутка, а отсюда к повышению его электропроводности. Вследствие этого напряжение падает до значения, необходимого для устойчивого горе­ния дуги.

Зависимость напряжения дуги от тока и сварочной цепи называют статической вольт-амперной характеристикой дуги.

Вольт-амперная характеристика дуги (рис. 8, а) имеет три области: падающую /, жесткую 2 и возрастаю­щую 3. В области 1 (до 100 А) с уве­личением тока напряжение значитель­но уменьшается. Это происходит в связи с тем, что при повышении тока увеличивается поперечное сечение, а следовательно, и проводимость столба дуги. В области 2 (100... 1000 А) при увеличении тока напряжение сохра­няется постоянным, так как сечение столба дуги и площади анодного и катодного пятен увеличиваются про­порционально току. Область характе­ризуется постоянством плотности тока. В области 3 напряжение возрастает вследствие того, что уве­личение плотности тока выше оп­ределенного значения не сопрово­ждается увеличением катодного пятна ввиду ограниченности сечения элект­рода. Дуга области / горит неустой­чиво и поэтому имеет ограниченное применение. Дуга области 2 горит ус­тойчиво и обеспечивает нормальный процесс сварки.

Вольт-амперная характеристика дуги при ручной дуговой сварке низко-

Углеродистой стали (рис. 8, б) пред­ставлена в виде кривых а (длина дуги 2 мм) и б (длина дуги 4 мм). Кривые В (длина дуги 2 мм) и г (длина дуги 4 мм) относятся к автоматической сварке под флюсом при высоких плотностях тока.

Напряжение, необходимое для воз­буждения дуги, зависит: от рода тока (постоянный или переменный), длины дугового промежутка, материала электрода и свариваемых кромок, по­крытия электродов и ряда других факторов. Значения напряжений, обе­спечивающих возникновение дуги в дуговых промежутках, равных 2...4 мм, находятся в пределах 40...70 В. На­пряжение (В) для установившейся сварочной дуги может быть определе­но по формуле

Ua = а + bin

Где а - коэффициент, по своей физи­ческой сущности представляющий сумму падений напряжений в катодной и анодной зонах, В, Ь - коэффициент, выражающий среднее падение напря­жения на единицу длины дуги, В/мм; /д - длина дуги, мм.

Длиной дуги называется расстояние между торцом электрода и поверх­ностью сварочной ванны. «Короткой» называют дугу длиной 2...4 мм. Длина «нормальной» дуги - 4...в мм. Дугу длиной более в мм называют «длинной».

Оптимальный режим сварки обе­спечивается при короткой дуге. При. длинной дуге процесс протекает нерав­номерно, дуга горит неустойчиво, ме­талл, проходя. через дуговой промежу­ток, больше окисляется и азотирует­ся, увеличиваются угар и разбрызги­вание металла.

Электрическая сварочная дуга мо­жет отклоняться от своего нормально­го положения при действии магнит­ных полей, неравномерно и несим­метрично расположенных вокруг дуги и в свариваемой детали. Эти поля действуют на движущиеся заряжен­ные частицы и тем самым оказывают воздействие на всю дугу. Такое явле­ние называется магнитным дутьем. Воздействие магнитных полей на дугу прямо пропорционально квадрату си­лы тока и становится заметным при сварочных токах более 300 А.

На отклонение дуги влияют место подвода тока к свариваемой детали (рис. 9, а, б, в ) и наклон электрода (рис. 9, г). Наличие вблизи свароч­ной дуги значительных ферромагнит­ных масс также нарушает симметрич­ность магнитного поля дуги и вызы­вает отклонение дуги в сторону этих масс.

Магнитное дутье в некоторых слу­чаях затрудняет процесс сварки, и поэтому принимаются меры по сниже­нию его действия на дугу. К таким мерам относятся: сварка короткой дугой, подвод сварочного тока в точ­ке, максимально близкой к дуге, на­клон электрода в сторону действия магнитного дутья, размещение у места сварки ферромагнитных масс.

При использовании переменного тока анодное и катодное пятна ме­няются местами с частотой, равной частоте тока. С течением времени на­пряжение Uд и ток / периодически изменяются от нулевого значения до наибольшего, как показано на рис. 10 (t/x-x - .напряжение зажигания дуги). При переходе значения тока через нуль и перемене полярности в начале и в конце каждого полупериода дуга гаснет, температура активных пятен и дугового промежутка снижается. Вследствие этого происходит деиони - зация газов и уменьшение электропро­водности столба дуги. Интенсивнее падает температура активного пятна, расположенного на поверхности сва­рочной ванны в связи с отводом теплоты в массу основного металла. Повторное зажигание дуги в начале каждого полупериода возможно толь­ко при повышенном напряжении, на­зываемом пиком зажигания. При этом установлено, что пик зажигания не­сколько выше, когда катодное пятно находится на основном металле. Для снижения пика зажигания, облегчения повторного зажигания дуги и повыше­ния устойчивости ее горения применя­ют меры, снижающие эффективный по­тенциал ионизации газов в дуге. При этом электропроводность дуги после ее угасания сохраняется дольше, пик за­жигания снижается, дуга легче воз­буждается и горит устойчивее.

К этим мерам относится примене­ние различных стабилизирующих эле­ментов (калий, натрий, кальций и др.), вводимых в зону дуги в виде электрод­ных покрытий или в виде флюсов.

Важное значение имеет сдвиг фаз между напряжением и током: необхо­димо, чтобы при переходе тока через нулевое значение напряжение было достаточным для возбуждения дуги.

Процесс возникновения дуги при сварке протекает следующим образом: при касании концом электрода свариваемого металла происходит короткое замыкание сварочной цепи. Проходя через отдельные выступы, ток, имеющий в точках соприкосновения электрода с металлом очень высокую плотность, мгновенно расплавляет их, вследствие чего между электродом и металлом образуется тонкая прослойка из жидкого металла. В следующий момент сварщик несколько отводит электрод, отчего в жидком металле образуется шейка, где плотность тока и температура металла возрастают. Затем благодаря испарению расплавленного металла шейка разрывается и в ионизированном промежут

Напряжение дуги, т. е. напряжение между электродом и свариваемым металлом, зависит в основном от ее длины. Чем короче дуга, тем ниже напряжение, хотя ток в дуге может остаться неизменным. Это обусловлено тем, что при длинной дуге сопротивление газового промежутка будет больше. Как известно из электротехники, чем выше сопротивление, тем выше должно быть напряжение для того, чтобы обеспечить прохождение того же тока в цепи. Общее падение напряжения в дуге (Ua) складывается из падения напряжения в катодной зоне (£/к), в столбе дуги (UCT) и в анодной зоне (t/a), т. е.

На абсолютную величину напряжения дуги могут также влиять состав электрода и свариваемого металла, состав и давление окружающей дугу газовой среды (воздуха, аргона, гелия, углекислого газа) и другие факторы.

Дуга при сварке металлическим электродом горит устойчиво при напряжении 18-28 в, а при сварке угольным или графитовым- при напряжении 30-35 в. Для возбуждения дуги требуется более высокое напряжение, чем то, которое необходимо для поддержания ее нормального горения. Это объясняется тем, что в начальный момент воздушный промежуток еще недостаточно нагрет и необходимо придать электронам большую скорость для ионизации атомов газового промежутка, что можно достичь только при более высоком напряжении в момент зажигания дуги.


На рис. 22 показаны графики изменения напряжения и тока в дуге при ее зажигании и устойчивом горении. Кривая, показывающая зависимость между напряжением и током в дуге, называется статической (или вольт- амперной) характеристикой дуги и соответствует установившемуся (стационарному) горению дуги. Точка А отмечает момент зажигания дуги. Затем напряжение дуги быстро падает до нормальной величины, соответствующей устойчивому горению дуги. Дальнейшее увеличение тока повышает нагрев электрода и скорость его плавления, но не сказывается на устойчивости горения дуги.

Падающую статическую характеристику имеет дуга при относительно небольшой плотности тока, используемой при ручной дуговой сварке или при автоматической сварке под флюсом на средних режимах. При более высоких плотностях тока (сварка под флюсом на большом токе, сварка проволокой малого диаметра в среде защитного газа) статическая характеристика дуги будет возрастающей, как это условно изображено на рис. 22 пунктирными линиями 3 и 4.

Устойчивой называется дуга, горящая равномерно, без произвольных обрывов, требующих повторного зажигания. Если дуга горит неравномерно, часто обрывается и гаснет, то такая дуга называется неустойчивой. Устойчивость дуги зависит от многих причин, основными из которых являются род тока, состав покрытия электродов, полярность и длина дуги.

Длина дуги равняется расстоянию между торцом электрода и поверхностью расплавленного металла свариваемого изделия. Обычно нормальная длина дуги не должна превышать 3-4 мм для остального электрода. Такая дуга называется короткой. Короткая дуга горит устойчиво и обеспечивает нормальное протекание процесса сварки. Для электродов диаметром 4-5 мм с покрытием ОММ-5 нормальная длина дуги равна 5-6 мм. Дуга, у которой длина больше 6 мм, называется длинной. Процесс плавления металла электрода при такой дуге протекает неравномерно. Стекающие с конца электрода капли металла в этом случае в большей степени могут окисляться кислородом и обогащаться азотом воздуха. Наплавленный металл получается пористым, шов имеет неровную поверхность, а дуга горит неустойчиво. При длинной дуге понижается производительность, увеличивается разбрызгивание металла, чаще образуются места с непроваром и недостаточным сплавлением наплавленного металла с основным.

дуга_ может питаться от источника постоянного или" переменного тока. Дуга может питаться постоянным током прямой и "обратной"полярности. "При прямой полярности минус источника тока подключают к электроду, а при обратной полярности - к свариваемому изделию. При сварке угольным электродом дуга легче возбуждается и устойчивее горит, если ток имеет прямую полярность. Ток обратной полярности применяют в тех случаях, когда нужно уменьшить выделение тепла на свариваемом изделии: при сварке тонкого или легкоплавкого металла, чувствительных к перегреву легированных, нержавеющих и высокоуглеродистых сталей и т. д., а также при пользовании некоторыми видами электродов (например, с покрытием УОНИ-13).

Для определения полярности цепи постоянного тока в стакане воды растворяют половину чайной ложки поваренной соли, опускают в раствор оба провода цепи и включают сварочный ток. Тот провод, около которого происходит интенсивное выделение пузырьков газа (водорода), будет отрицательным, а второй - положительным. Концы проводов на длине 1-2 см должны быть очищены от изоляции. Для определения полярности тока применяют также специальные полюсоуказатели.

На рис. 23 показаны кривые изменения напряжения и тока в Дуге переменного тока за один период. Так как в каждом полупериоде ток (1д) и напряжение дуги ({/j изменяются от нуля до максимальных значений, то за этот же промежуток времени уменьшается температура столба дуги и степень ионизации дугового промежутка. Вследствие этого для возбуждения дуги после прохождения тока через нулевое значение необходимо повышенное напряжение, равное U3ax, которое больше нормального напряжения дуги UR.

Для повышения устойчивости горения дуги переменного тока в покрытия электродов и в сварочные флюсы вводят элементы с низким потенциалом ионизации: калий, натрий и кальций, которые облегчают возбуждение дуги после того, как ток уменьшается до нуля, и одновременно изменяет свое направление на противоположное.

Вокруг дуги и в свариваемом металле возникают магнитные поля. Если эти поля расположены относительно оси дуги несимметрично, то они могут отклонять дугу, являющуюся гибким проводником тока, что затрудняет сварку. Отклоняющее действие магнитных полей на сварочную дугу носит название магнитного дутья.

Сила магнитного поля пропорциональна квадрату тока, поэтому магнитное дутье особенно заметно при сварке постоянным током значительной величины (свыше 300-400 а). При сварке переменным током толстопокрытыми электродами и сварке под флюсом явление магнитного дутья сказывается значительно слабее, чем при постоянном токе и при применении голых или тонкопокрытых электродов.

На величину магнитного дутья оказывает также влияние расположение железных (ферромагнитных) масс вблизи места сварки, место подвода тока к изделию, форма изделия, тип сварного соединения, наличие зазоров и другие причины. Для уменьшения отклоняющего действия магнитных полей на дугу следует вести сварку возможно более короткой дугой, подводить сварочный ток к изделию в точке, расположенной как можно ближе к месту сЕарки, а также изменять угол наклона электрода так, чтобы нижний ко- ьец электрода был обращен в сторону действия магнитного дутья.

На рис. 24 показано, как сказывается влияние места подвода тока к изделию на отклонение дуги.

Для уменьшения влияния больших ферромагнитных масс на свариваемое изделие укладывают массивную стальную плиту со стороны, противоположной направлению отклонения дуги.Один провод от источника присоединяют к стальной плите, которую укладывают на расстоянии 200-250 мм от места сварки, постепенно перемещая ее вдоль шва по мере продвижения дуги.